Advertisement

Safe Autonomous Transport Vehicles in Heterogeneous Outdoor Environments

  • Tobe Toben
  • Sönke Eilers
  • Christian Kuka
  • Sören Schweigert
  • Hannes Winkelmann
  • Stefan Ruehrup
Part of the Communications in Computer and Information Science book series (CCIS, volume 336)

Abstract

Autonomous transport vehicles (AGVs) steadily gain importance in logistics and factory automation. Currently, the systems are mainly operating in indoor scenarios at limited speeds, but with the evolution of navigation capabilities and obstacle avoidance techniques, AGVs have reached a degree of autonomy that, from a technical perspective, allows their operation beyond closed work environments. The major hurdle to overcome is to be able to guarantee the required safety level for industrial applications. In this paper, we propose a general architecture for AGVs that formalizes the current safety concept and extends it to vehicles driving at higher speeds in outdoor environments. Technically, the additional safety level is achieved by integrating information from stationary sensors in order to increase the perception of the vehicles.

Keywords

Trajectory Planning Mode Switch Obstacle Detection Safety Concept External Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alami, R., Krishna, K., Simeon, T.: Provably Safe Motions Strategies for Mobile Robots in Dynamic Domains. In: Autonomous Navigation in Dynamic Environments. STAR, vol. 35, pp. 85–106. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Althoff, M., Stursberg, O., Buss, M.: Stochastic reachable sets of interacting traffic participants. In: 2008 IEEE Intelligent Vehicles Symposium, pp. 1086–1092 (2008)Google Scholar
  3. 3.
    Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. IJAHUC 2(4), 263–277 (2007)CrossRefGoogle Scholar
  4. 4.
    Benenson, R., Fraichard, T., Parent, M.: Achievable safety of driverless ground vehicles. In: ICARCV, pp. 515–521. IEEE (2008)Google Scholar
  5. 5.
    Berger, C., Rumpe, B.: Autonomous Driving - Insights from the DARPA Urban Challenge. IT - Information Technology 50(4), 258–264 (2008)Google Scholar
  6. 6.
    Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A., Riboni, D.: A survey of context modelling and reasoning techniques. Pervasive and Mobile Computing (June 2009)Google Scholar
  7. 7.
    Caveney, D.: Hierarchical software architectures and vehicular path prediction for cooperative driving applications. In: 11th Int. IEEE Conf. on Intelligent Transportation Systems (ITSC 2008), October 2008, pp. 1201–1206 (2008)Google Scholar
  8. 8.
    Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Eilers, S., Peikenkamp, T., Rührup, S., Schweigert, S., Toben, T., Winkelmann, H.: Eine Generische Gefährdungsliste für Fahrerlose Transportfahrzeuge in der Intralogistik. In: Automatisierungs-, Assistenzsysteme und eingebettete Systeme für Transportmittel, pp. 245–259. ITS Nds. e.V, Braunschweig (2011)Google Scholar
  10. 10.
    EN 954-1:1996, Safety of machinery - Safety-related parts of control systems (1996)Google Scholar
  11. 11.
    Ess, A., Leibe, B., Schindler, K., Gool, L.J.V.: Moving obstacle detection in highly dynamic scenes. In: ICRA, pp. 56–63. IEEE (2009)Google Scholar
  12. 12.
    European Committee for Standardization (CEN): Safety of industrial trucks - Driverless trucks and their systems; German version EN 1525 (1997)Google Scholar
  13. 13.
    Fraichard, T., Asama, H.: Inevitable collision states - a step towards safer robots? Advanced Robotics 18(10), 1001–1024 (2004)CrossRefGoogle Scholar
  14. 14.
    ISO EN 13849-1:2006 Safety of machinery - Safety-related parts of control systems (2006)Google Scholar
  15. 15.
    Kuchar, J.K., Yang, L.C.: A review of conflict detection and resolution modeling methods. IEEE Trans. on Intelligent Transportation Systems 1, 179–189 (2000)CrossRefGoogle Scholar
  16. 16.
    Lüth, C., Frese, U., Täubig, H., Walter, D., Hausmann, D.: SAMS Sicherheitskomponente für Autonome Mobile Serviceroboter. In: VDI-Bericht 2012. VDI (2008)Google Scholar
  17. 17.
    Montemerlo, M., Becker, J., Bhat, S., Dahlkamp, H., Dolgov, D., Ettinger, S., Haehnel, D., Hilden, T., Hoffmann, G., Huhnke, B., Johnston, D., Klumpp, S., Langer, D., Levandowski, A., Levinson, J., Marcil, J., Orenstein, D., Paefgen, J., Penny, I., Petrovskaya, A., Pflueger, M., Stanek, G., Stavens, D., Vogt, A., Thrun, S.: Junior: The stanford entry in the urban challenge. J. Field Robot. 25, 569–597 (2008)CrossRefGoogle Scholar
  18. 18.
    Pnueli, A.: The Temporal Logic of Programs. In: 18th Symposium on Foundations of Computer Science, pp. 46–57 (October 1977)Google Scholar
  19. 19.
    Safespot: cooperative vehicles and road infrastructure for road safety, http://www.safespot-eu.org
  20. 20.
    Schmidt, C., Oechsle, F., Branz, W.: Research on trajectory planning in emergency situations with multiple objects. In: IEEE Intelligent Transportation Systems Conference (ITSC 2006), pp. 988–992 (2006)Google Scholar
  21. 21.
    Seward, D., Pace, C., Agate, R.: Safe and effective navigation of autonomous robots in hazardous environments. Auton. Robots 22, 223–242 (2007)CrossRefGoogle Scholar
  22. 22.
    Thorpe, C., Carlson, J., Duggins, D., Gowdy, J., MacLachlan, R., Mertz, C., Suppe, A., Wang, B.: Safe Robot Driving in Cluttered Environments. In: 11th Int. Symposium on Robotics Research (ISRR 2003), pp. 271–280 (2005)Google Scholar
  23. 23.
    Toben, T.: A Formal Model of Reliable Sensor Perception. In: Lukowicz, P., Kunze, K., Kortuem, G. (eds.) EuroSSC 2010. LNCS, vol. 6446, pp. 94–107. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Toben, T., Rakow, J.H.: Safety and Precision of Spatial Context Models for Autonomous Systems. In: 1st ETAPS Workshop on Hybrid Autonomous Systems (HAS 2011). ENTCS (2011) (to appear)Google Scholar
  25. 25.
    Ullrich, G.: Fahrerlose Transportsysteme. Vieweg + Teubner (2011)Google Scholar
  26. 26.
    Vincoli, J.: Basic Guide to System Safety, 2nd edn. Wiley, New York (2006)CrossRefGoogle Scholar
  27. 27.
    Walter, D.: A Formal Verification Environment for Use in the Certification of Safety-Related C Programs. Ph.D. thesis, Universität Bremen (2010)Google Scholar
  28. 28.
    Wardziński, A.: The Role of Situation Awareness in Assuring Safety of Autonomous Vehicles. In: Górski, J. (ed.) SAFECOMP 2006. LNCS, vol. 4166, pp. 205–218. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tobe Toben
    • 1
  • Sönke Eilers
    • 1
  • Christian Kuka
    • 1
  • Sören Schweigert
    • 1
  • Hannes Winkelmann
    • 1
  • Stefan Ruehrup
    • 1
    • 2
  1. 1.OFFIS e.V.OldenburgGermany
  2. 2.FTWViennaAustria

Personalised recommendations