Advertisement

Novel Morphological Algorithms for Dominating Sets on Graphs with Applications to Image Analysis

  • Anupama Potluri
  • Chakravarthy Bhagvati
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7655)

Abstract

In this paper, we extend the morphological operators defined for graphs by Cousty et al. to use structuring elements. We then apply these extended operators to develop algorithms for Minimum Dominating Set (MDS) and Minimum Independent Dominating Set (MIDS) on incomplete grid graphs which correspond to binary images with 4-connected neighbourhoods. We show that our algorithm performs as well as the best known heuristic for Minimum Independent Dominating Set. We apply the extended morphological graph operators and algorithms to various image analysis tasks such as distance transforms, skeletons and clustering. In particular, we propose a novel MIDS Skeleton that may potentially reduce the time for reconstructing the original objects. A hierarchical clustering algorithm (also using MIDS) is proposed. This algorithm is analogous to the conventional algorithms that use a distance threshold for clustering. We illustrate the proposed algorithms on several example images and conclude that they are useful in image analysis.

Keywords

Clustering Grid Graphs Image Analysis Minimum Dominating Set Minimum Independent Dominating Set Morphological Operators 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acton, S.T.: Fast algorithms for area morphology. Digital Signal Processing 11(3), 187–203 (2001)CrossRefGoogle Scholar
  2. 2.
    Basagni, S.: Distributed clustering for ad hoc networks. In: Proceedings of ISPAN 1999 International Symposium on Parallel Architectures, Algorithms and Networks, pp. 310–315 (1999)Google Scholar
  3. 3.
    Bloch, I.: Lattices of fuzzy sets and bipolar fuzzy sets and mathematical morphology. Information Sciences 181, 2002–2015 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bloch, I., Bretto, A.: Mathematical Morphology on Hypergraphs: Preliminary Definitions and Results. In: Domenjoud, E. (ed.) DGCI 2011. LNCS, vol. 6607, pp. 429–440. Springer, Heidelberg (2011)Google Scholar
  5. 5.
    Bondy, A., Murty, U.: Graph Theory. Springer, Berlin (2008)zbMATHCrossRefGoogle Scholar
  6. 6.
    Chen, Y., Dougherty, E.R.: Texture Classification by Gray-Scale Morphological Granulometries. In: Maragos, P. (ed.) Visual Communications and Image Processing 1992. SPIE, vol. 1818, pp. 931–942 (1992)Google Scholar
  7. 7.
    Chen, Y.P., Liestman, A.L., Liu, J.: Clustering algorithms for ad hoc wireless networks. Ad Hoc and Sensor Networks, 145–164 (2006)Google Scholar
  8. 8.
    Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Mathematics, 165–177 (1990)Google Scholar
  9. 9.
    Comer, M.L., Delp, E.J.: Morphological operations for color image processing. J. Electronic Imaging 8(3), 279–289 (1999)CrossRefGoogle Scholar
  10. 10.
    Cousty, J., Bertrand, G., Couprie, M., Najman, L.: Collapses and Watersheds in Pseudomanifolds. In: Wiederhold, P., Barneva, R.P. (eds.) IWCIA 2009. LNCS, vol. 5852, pp. 397–410. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Cousty, J., Najman, L., Serra, J.: Some Morphological Operators in Graph Spaces. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 149–160. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Dias, F., Cousty, J., Najman, L.: Some morphological operators on simplicial complex spaces. In: Proceedings of the 16th IAPR International Conference on Discrete Geometry for Computer Imagery, DGCI 2011, pp. 441–452 (2011)Google Scholar
  13. 13.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vision 59(2), 167–181 (2004)CrossRefGoogle Scholar
  14. 14.
    Felzenszwalb, P.F., Zabih, R.: Dynamic programming and graph algorithms in computer vision. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 721–740 (2011)CrossRefGoogle Scholar
  15. 15.
    Fisher, R.: Image processing learning resources, http://homepages.inf.ed.ac.uk/rbf/HIPR2/thin.htm
  16. 16.
    Garey, M., Johnson, D.S.: Computers and Tractability, A guide to the theory of NP-Completeness. Freeman and Company, New York (1979)Google Scholar
  17. 17.
    Géraud, T., Talbot, H., Droogenbroeck, M.V.: Algorithms for mathematical morphology. In: Najman, L., Talbot, H. (eds.) Mathematical Morphology, pp. 323–353. John Wiley and Sons Inc. (2010)Google Scholar
  18. 18.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison Wesley, New York (1993)Google Scholar
  19. 19.
    Heijmans, H., Vincent, L.: Graph morphology in image analysis. In: Dougherty, E. (ed.) Mathematical Morphology in Image Processing, pp. 171–203. Marcel Dekker, New York (1992)Google Scholar
  20. 20.
    Maragos, P.: Pattern Spectrum and Multiscale Shape Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11, 701–715 (1989)zbMATHCrossRefGoogle Scholar
  21. 21.
    Meyer, F., Stawiaski, J.: Morphology on Graphs and Minimum Spanning Trees. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 161–170. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Nieberg, T., Hurink, J.L.: A PTAS for the Minimum Dominating Set Problem in Unit Disk Graphs. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005. LNCS, vol. 3879, pp. 296–306. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Popev, A.T.: Morphological operations on fuzzy sets. In: Proceedings of Fifth International Conference on Image Processing and its Applications, pp. 837–840 (1995)Google Scholar
  24. 24.
    Sartor, L.J., Weeks, A.R.: Morphological operations on color images. J. Electron. Imaging 10, 548–559 (2001)CrossRefGoogle Scholar
  25. 25.
    Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, New York (1982)zbMATHGoogle Scholar
  26. 26.
    Shen, C., Li, T.: Multi-document summarization via the minimum dominating set. In: Proceedings 23rd International Conference on Computational Linguistics (Coling 2010), pp. 984–992 (August 2010)Google Scholar
  27. 27.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. In: Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition (CVPR 1997), pp. 731–737 (1997)Google Scholar
  28. 28.
    Sternberg, S.R.: Grayscale morphology. Comput. Vision Graph. Image Process. 35(3), 333–355 (1986)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Vincent, L.: Morphological algorithms. In: Dougherty, E. (ed.) Mathematical Morphology in Image Processing, pp. 255–288. Marcel Dekker, New York (1992)Google Scholar
  30. 30.
    Wattenhoffer, R.: Distributed dominating set approximation, http://www.disco.ethz.ch/lectures/ss04/distcomp/lecture/chapter12.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Anupama Potluri
    • 1
  • Chakravarthy Bhagvati
    • 1
  1. 1.Department of Computer and Information SciencesUniversity of HyderabadHyderabadIndia

Personalised recommendations