Advertisement

Cellular Topology on the Triangular Grid

  • Benedek Nagy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7655)

Abstract

In this paper we use the triangular grid and present a coordinate system that is appropriate to address elements (cells) of cell complexes. Coordinate triplets are used to address the triangle pixels of both orientations, the edges between them and the points at the corners of the triangles. To illustrate the utility of this system some topological algorithms, namely collapses and cuts are presented.

Keywords

Coordinate system Triangular grid Topology Digital geometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brimkov, V.E., Barneva, R.: “Honeycomb” vs square and cubic models. Electronic Notes in Theoretical Computer Science 46 (2001)Google Scholar
  2. 2.
    Cousty, J., Bertrand, G., Couprie, M., Najman, L.: Collapses and Watersheds in Pseudomanifolds. In: Wiederhold, P., Barneva, R.P. (eds.) IWCIA 2009. LNCS, vol. 5852, pp. 397–410. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts: Thinnings, shortest path forests, and topological watersheds. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(5), 925–939 (2010)CrossRefGoogle Scholar
  4. 4.
    Coxeter, H.S.M.: Introduction to Geometry, 2nd edn. Wiley, New York (1969)zbMATHGoogle Scholar
  5. 5.
    Hatcher, A.: Algebraic Topology. Cambridge University Press (2002)Google Scholar
  6. 6.
    Her, I.: Geometric transformations on the hexagonal grid. IEEE Transactions on Image Processing 4(9), 1213–1222 (1995)CrossRefGoogle Scholar
  7. 7.
    Ito, K. (ed.): Encyclopedic Dictionary of Mathematics, vol. 2. MIT Press (1993, 2000) (original Japanese edition, 1954)Google Scholar
  8. 8.
    Luczak, E., Rosenfeld, A.: Distance on a hexagonal grid. Transactions on Computers C-25(5), 532–533 (1976)CrossRefGoogle Scholar
  9. 9.
    Klette, R., Rosenfeld, A.: Digital geometry. Geometric methods for digital picture analysis. Morgan Kaufmann Publishers, San Francisco; Elsevier Science B.V., Amsterdam (2004)Google Scholar
  10. 10.
    Kong, T., Rosenfeld, A.: Digital topology: Introduction and survey. Computer Vision, Graphics, and Image Processing 48(3), 357–393 (1989)CrossRefGoogle Scholar
  11. 11.
    Kovalevsky, V.: Finite topology as applied to image analysis. Computer Vision, Graphics and Image Processing 45, 141–161 (1989)CrossRefGoogle Scholar
  12. 12.
    Kovalevsky, V.: Algorithms in Digital Geometry Based on Cellular Topology. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 366–393. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Kovalevsky, V.A.: Geometry of Locally Finite Spaces (Computer Agreeable Topology and Algorithms for Computer Imagery). Editing House Dr. Bärbel Kovalevski, Berlin (2008)Google Scholar
  14. 14.
    Nagy, B.: A family of triangular grids in digital geometry. In: ISPA 2003, 3rd International Symposium on Image and Signal Processing and Analysis, Rome, Italy, pp. 101–106 (2003)Google Scholar
  15. 15.
    Nagy, B.: Generalized triangular grids in digital geometry. Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 20, 63–78 (2004)zbMATHGoogle Scholar
  16. 16.
    Nagy, B.: A symmetric coordinate frame for hexagonal networks. In: Theoretical Computer Science - Information Society 2004, Ljubljana, Slovenia, pp. 193–196 (2004)Google Scholar
  17. 17.
    Nagy, B.: Characterization of digital circles in triangular grid. Pattern Recognition Letters 25(11), 1231–1242 (2004)CrossRefGoogle Scholar
  18. 18.
    Nagy, B., Strand, R.: A Connection between ℤn and Generalized Triangular Grids. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008, Part II. LNCS, vol. 5359, pp. 1157–1166. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Nagy, B., Strand, R.: Non-traditional grids embedded in ℤn. International Journal of Shape Modeling - IJSM 14(2), 209–228 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Yong-Kui, L.: The generation of straight lines on hexagonal grids. Comput. Graph. Forum 12(1), 21–25 (1993)CrossRefGoogle Scholar
  21. 21.
    Wuthrich, C.A., Stucki, P.: An algorithm comparison between square- and hexagonal-based grids. Graph. Model Im. Proc. 53(4), 324–339 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Benedek Nagy
    • 1
  1. 1.Department of Computer Science, Faculty of InformaticsUniversity of DebrecenDebrecenHungary

Personalised recommendations