Non-separable Spatiotemporal Brain Hemodynamics Contain Neural Information

  • Felix Bießmann
  • Yusuke Murayama
  • Nikos K. Logothetis
  • Klaus-Robert Müller
  • Frank C. Meinecke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7263)

Abstract

The goal of many functional Magnetic Resonance Imaging (fMRI) studies is to infer neural activity from hemodynamic signals. Classical fMRI analysis approaches assume a canonical hemodynamic response function (HRF), which is identical in every voxel. Canonical HRFs imply space-time separability. Many studies explored the relevance of non-separable HRFs. These studies were focusing on the relationship between stimuli or electroencephalographic data and fMRI data. It is not clear from these studies whether non-separable spatiotemporal dynamics of fMRI signals contain neural information. This study provides direct empirical evidence that non-separable spatiotemporal deconvolutions of multivariate fMRI time series predict intracortical neural signals better than standard canonical HRF models. Our results demonstrate that there is more neural information in fMRI signals than detected by most analysis methods.

Keywords

Convolution Deconvolution Tempo 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aguirre, G.K., Zarahn, E., D’Esposito, M.: The variability of human BOLD hemodynamic responses. Neuroimage 8(4), 360–369 (1998)CrossRefGoogle Scholar
  2. 2.
    Berwick, J., Johnston, D., Jones, M., Martindale, J., Martin, C., Kennerley, A.J., Redgrave, P., Mayhew, J.E.W.: Fine detail of neurovascular coupling revealed by spatiotemporal analysis of the hemodynamic response to single whisker stimulation in rat barrel cortex. Journal of Neurophysiology 99(2), 787–798 (2008)CrossRefGoogle Scholar
  3. 3.
    Bießmann, F., Meinecke, F.C., Gretton, A., Rauch, A., Rainer, G., Logothetis, N.K., Müller, K.-R.: Temporal kernel CCA and its application in multimodal neuronal data analysis. Machine Learning Journal 79(1-2), 5–27 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Blankertz, B., Lemm, S., Treder, M., Haufe, S., Müller, K.-R.: Single-trial analysis and classification of ERP components–a tutorial. Neuroimage 56(2), 814–825 (2011)CrossRefGoogle Scholar
  5. 5.
    Buxton, R.B., Uludag, K., Dubowitz, D.J., Liu, T.T.: Modeling the hemodynamic response to brain activation. Neuroimage 23, 220–233 (2004)CrossRefGoogle Scholar
  6. 6.
    Chu, C., Mourão-Miranda, J., Chiu, Y.-C., Kriegeskorte, N., Tan, G., Ashburner, J.: Utilizing temporal information in fMRI decoding: classifier using kernel regression methods. Neuroimage 58(2), 560–571 (2011)CrossRefGoogle Scholar
  7. 7.
    Devor, A., Ulbert, I., Dunn, A.K., Narayanan, S.N., Jones, S.R., Andermann, M.L., Boas, D.A., Dale, A.M.: Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity. Proc. Natl. Acad. Sci. USA 102(10), 3822–3827 (2005)CrossRefGoogle Scholar
  8. 8.
    Friston, K.J., Jezzard, P., Turner, R.: Analysis of functional MRI time-series. Human Brain Mapping 1, 153–171 (1994)CrossRefGoogle Scholar
  9. 9.
    Glover, G.H.: Deconvolution of impulse response in event-related bold fMRI. Neuroimage 9(4), 416–429 (1999)CrossRefGoogle Scholar
  10. 10.
    Hardoon, D.R., Mourão-Miranda, J., Brammer, M., Shawe-Taylor, J.: Unsupervised analysis of fMRI data using kernel canonical correlation. Neuroimage 37(4), 1250–1259 (2007)CrossRefGoogle Scholar
  11. 11.
    Haxby, J.V., Gobbini, M., Furey, M., Ishai, A., Schouten, J., Pietrini, P.: Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293(5539), 2425 (2001)CrossRefGoogle Scholar
  12. 12.
    Hollander, M., Wolfe, D.: Nonparametric statistical methods. John Wiley & Sons, Inc. (1999)Google Scholar
  13. 13.
    Hotelling, H.: Relations between two sets of variates. Biometrika 28(3), 321–377 (1936)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kriegeskorte, N., Goebel, R., Bandettini, P.: Information-based functional brain mapping. Proceedings of the National Academy of Sciences 103(10), 3863 (2006)CrossRefGoogle Scholar
  15. 15.
    Lange, N., Strother, S.C., Anderson, J.R., Nielsen, F.A., Holmes, A.P., Kolenda, T., Savoy, R., Hansen, L.K.: Plurality and resemblance in fMRI data analysis. Neuroimage 10(3 Pt 1), 282–303 (1999)CrossRefGoogle Scholar
  16. 16.
    Leopold, D.A., Murayama, Y., Logothetis, N.K.: Very slow activity fluctuations in monkey visual cortex: Implications for functional brain imaging. Cerebral Cortex, 1–12 (2003)Google Scholar
  17. 17.
    Logothetis, N.K., Pauls, J., Augath, M.A., Trinath, T., Oeltermann, A.: Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843), 150–157 (2001)CrossRefGoogle Scholar
  18. 18.
    Lu, Y., Grova, C., Kobayashi, E., Dubeau, F., Gotman, J.: Using voxel-specific hemodynamic response function in EEG-fMRI data analysis: An estimation and detection model. Neuroimage 34(1), 195–203 (2007)CrossRefGoogle Scholar
  19. 19.
    Martindale, J., Mayhew, J., Berwick, J., Jones, M., Martin, C., Johnston, D., Redgrave, P., Zheng, Y.: The hemodynamic impulse response to a single neural event. J. Cereb. Blood Flow Metab. 23(5), 546–555 (2003)CrossRefGoogle Scholar
  20. 20.
    Mourão-Miranda, J., Friston, K.J., Brammer, M.: Dynamic discrimination analysis: a spatial-temporal SVM. Neuroimage 36(1), 88–99 (2007)CrossRefGoogle Scholar
  21. 21.
    Müller, K.-R., Mika, S., Ratsch, G., Tsuda, K., Schölkopf, B.B.: An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks 12(2), 181–201 (2001)CrossRefGoogle Scholar
  22. 22.
    Murayama, Y., Bießmann, F., Meinecke, F.C., Müller, K.-R., Augath, M.A., Oeltermann, A., Logothetis, N.K.: Relationship between neural and hemodynamic signals during spontaneous activity studied with temporal kernel CCA. Magnetic Resonance Imaging 28(8), 1095–1103 (2010)CrossRefGoogle Scholar
  23. 23.
    Shmuel, A., Yacoub, E., Chaimow, D., Logothetis, N.K., Ugurbil, K.: Spatio-temporal point-spread function of fMRI signal in human gray matter at 7 tesla. Neuroimage 35(2), 539–552 (2007)CrossRefGoogle Scholar
  24. 24.
    Strang, G.: Introduction to linear algebra. Wellesley-Cambridge Press (2009)Google Scholar
  25. 25.
    Yacoub, E., Ugurbil, K., Harel, N.: The spatial dependence of the poststimulus undershoot as revealed by high-resolution BOLD- and CBV-weighted fMRI. J. Cereb. Blood Flow Metab. 26(5), 634–644 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Felix Bießmann
    • 1
    • 2
    • 4
  • Yusuke Murayama
    • 2
  • Nikos K. Logothetis
    • 2
    • 3
  • Klaus-Robert Müller
    • 1
    • 4
  • Frank C. Meinecke
    • 1
  1. 1.Machine Learning GroupBerlin Institute of TechnologyGermany
  2. 2.Max-Planck Institute for Biological CyberneticsTübingenGermany
  3. 3.Division of Imaging Science and Biomedical EngineeringUniversity of ManchesterUK
  4. 4.Bernstein Center for Computational NeuroscienceBerlinGermany

Personalised recommendations