Refining the Judgment Threshold to Improve Recognizing Textual Entailment Using Similarity

  • Quang-Thuy Ha
  • Thi-Oanh Ha
  • Thi-Dung Nguyen
  • Thuy-Linh Nguyen Thi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7654)


In recent years, Recognizing Textual Entailment (RTE) catches strongly the attention of the Natural Language Processing (NLP) community. Using Similarity is an useful method for RTE, in which the Judgment Threshold plays an important role as the learning model. This paper proposes an RTE model based on using similarity. We describe clearly the solutions to determine and to refine the Judgment Threshold for Improvement RTE. The measure of the synonym similarity also is considered. Experiments on a Vietnamese version of the RTE3 corpus are showed.


Recognizing Textual Entailment the Judgment Threshold Refining the Judgment Threshold 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Androutsopoulos, I., Malakasiotis, P.: A Survey of Paraphrasing and Textual Entailment Methods. Journal of Artificial Intelligence Research 38, 135–187 (2010)zbMATHGoogle Scholar
  2. 2.
    Iftene, A.: Textual Entailment, PhD. Thesis, “Al. I. Cuza” University (Romania) (2009)Google Scholar
  3. 3.
    Jijkoun, V., de Rijke, M.: Recognizing Textual Entailment: Is Word Similarity Enough? In: Quiñonero-Candela, J., Dagan, I., Magnini, B., d’Alché-Buc, F. (eds.) MLCW 2005. LNCS (LNAI), vol. 3944, pp. 449–460. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Lin, D.: An Information-Theoretic Definition of Similarity. In: ICML 1998, pp. 296–304 (1998)Google Scholar
  5. 5.
    Muramatsu, Y., Uduka, K., Yamamoto, K.: Textual Entailment Recognition using Word Overlap, Mutual Information and Subpath Set. In: Proceedings of the 2nd Workshop on Cognitive Aspects of the Lexicon, pp. 18–27 (2010)Google Scholar
  6. 6.
    Moruz, M.-A.: Predication Driven Textual Entailment, PhD. Thesis, “Al. I. Cuza” University (Romania) (2011)Google Scholar
  7. 7.
    Pérez, D., Alfonseca, E.: Using Bleu-like Algorithms for the Automatic Recognition of Entailment. In: Quiñonero-Candela, J., Dagan, I., Magnini, B., d’Alché-Buc, F. (eds.) MLCW 2005. LNCS (LNAI), vol. 3944, pp. 191–204. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Pham, M.Q.N., Le Nguyen, M., Shimazu, A.: Using Machine Translation for Recognizing Textual Entailment in Vietnamese Language. In: RIVF 2012, pp. 1–6 (2012)Google Scholar
  9. 9.
    Castillo, J.J.: An approach to Recognizing Textual Entailment and TE Search Task using SVM. Procesamiento del Lenguaje Natural (44), marzo de 2010, 139–145 (2010) Google Scholar
  10. 10.
    Tsuchida, M., Ishikawa, K.: IKOMA at TAC2011: A Method for Recognizing Textual Entailment using Lexical-level and Sentence Structure-level features. In: Proceeding of TAC 2011 (2011)Google Scholar
  11. 11.
    Wang, R.: Intrinsic and Extrinsic Approaches to Recognizing Textual Entailment, PhD Thesis, Saarland University (German) (2011)Google Scholar
  12. 12.
    Yokote, K.-I., Bollegala, D., Ishizuka, M.: Similarity is not Entailment-Jointly Learning Similarity Transformations for Textual Entailment. In: Proceedings of the 26th National Conference on Artificial Intelligence (AAAI), pp. 1720–1726 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Quang-Thuy Ha
    • 1
  • Thi-Oanh Ha
    • 1
  • Thi-Dung Nguyen
    • 1
  • Thuy-Linh Nguyen Thi
    • 1
  1. 1.College of Technology (UET)Vietnam National University, Hanoi (VNU)HanoiVietnam

Personalised recommendations