Collective Cubing Platform towards Definition and Analysis of Warehouse Cubes

  • Duong Thi Anh Hoang
  • Ngoc Sy Ngo
  • Binh Thanh Nguyen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7654)


Multidimensional data analysis, as supported by OLAP (online analytical processing), requires the computation of many aggregate functions over a large volume of historically collected data. Meanwhile, a recent trend in data communities has been the presence of dynamic, interdisciplinary data communities in which users can find and select data from a wide range of data providers. Using this approach, we have designed the Cubing service platform, which allows rapid retrieval of warehouse cubes in a way that would be familiar to any online shopper. In such an open marketplace, cubing services play a role as a metadata layer that maps cube definitions to the underlying schema and defines how the published cubes will be queried. The proposed platform couples an efficient cube selection mechanism with semantic reasoning capabilities, capable of processing large data sources, which expressed in a variety of formalisms, into a collection of warehouse datasets that expose the native metadata in a uniform manner. Thus, the platform is easily extensible and robust to updates of both data and metadata in the warehouse datasets.


Data cube OLAP Open data Linked data 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ponniah, P.: Data warehousing fundamentals: a comprehensive guide for IT professionals, vol. 1. Wiley-Interscience (2001)Google Scholar
  2. 2. Data Publishing Architecture for the Extended Enterprise. Technical Report (March 2003)Google Scholar
  3. 3.
    IBM Software: Build high-speed, scalable analytics into the data warehouse. Technical Report (May 2010)Google Scholar
  4. 4.
    Hung, E., Cheung, D.W., Kao, B.: Optimization in Data Cube System Design. Journal of Intelligent Information Systems 23(1), 17–45 (2004)zbMATHCrossRefGoogle Scholar
  5. 5.
    Nguyen, T.B., Tjoa, A.M., Wagner, R.: Conceptual Multidimensional Data Model Based on MetaCube. In: Yakhno, T. (ed.) ADVIS 2000. LNCS, vol. 1909, pp. 24–33. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Xin, D., Han, J., Li, X., Wah, B.W.: Star-Cubing: Computing Iceberg Cubes by Top-Down and Bottom-Up Integration. In: VLDB, pp. 476–487 (2003)Google Scholar
  7. 7.
    Jiang, F., Pei, J.: IX-cubes: iceberg cubes for data warehousing and olap on XML data. In: Proceedings of the Sixteenth ACM Conference on Information and Knowledge Management, CIKM 2007, pp. 1–4 (2007)Google Scholar
  8. 8.
    Messaoud, R.B.E.N., Boussaid, O., Rabaséda, S.L.: A Multiple Correspondence Analysis to Organize Data Cubes. Information Systems Frontiers 1, 133–146 (2007)Google Scholar
  9. 9.
    Pitarch, Y., Favre, C., Laurent, A., Poncelet, P.: Context-aware generalization for cube measures. In: Proceedings of the ACM 13th International Workshop on Data Warehousing and OLAP - DOLAP 2010, pp. 99–104. ACM Press (2010)Google Scholar
  10. 10.
    Balazinska, M., Howe, B.: Data Markets in the Cloud: An Opportunity for the Database Community. In: VLDB, pp. 1482–1485 (2011)Google Scholar
  11. 11.
    Virgilio, R.D., Orsi, G., Tanca, L., Torlone, R.: Semantic data markets: a flexible environment for knowledge management. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, CIKM 2011, pp. 1559–1564. ACM (2011)Google Scholar
  12. 12.
    Möller, K., Dodds, L.: The Kasabi Information Marketplace. In: WWW 2012 Developer Track, pp. 3–6 (2012)Google Scholar
  13. 13.
    DataMarket Blog: Data-as-a-Service Market Definitions (2010)Google Scholar
  14. 14.
    United Nations World Food Programme: Emergency Food Security Assessment Handbook (EFSA) - 2nd edn. Technical report (2009)Google Scholar
  15. 15.
    W3C: The RDF Data Cube Vocabulary (2012)Google Scholar
  16. 16.
    International Food Policy Research Institute (IFPRI): Global Hunger Index - RDF Version (2012)Google Scholar
  17. 17.
    Roy Chowdhury, S., Rodríguez, C., Daniel, F., Casati, F.: Wisdom-Aware Computing: On the Interactive Recommendation of Composition Knowledge. In: Maximilien, E.M., Rossi, G., Yuan, S.-T., Ludwig, H., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6568, pp. 144–155. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Nguyen, T.B., Wagner, F., Schoepp, W.: Cloud Intelligent Services for Calculating Emissions and Costs of Air Pollutants and Greenhouse Gases. In: Nguyen, N.T., Kim, C.-G., Janiak, A. (eds.) ACIIDS 2011, Part I. LNCS, vol. 6591, pp. 159–168. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Duong Thi Anh Hoang
    • 1
  • Ngoc Sy Ngo
    • 1
  • Binh Thanh Nguyen
    • 1
  1. 1.Information Technology CenterHue UniversityHueVietnam

Personalised recommendations