Advertisement

Differential and Linear Cryptanalysis Using Mixed-Integer Linear Programming

  • Nicky Mouha
  • Qingju Wang
  • Dawu Gu
  • Bart Preneel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7537)

Abstract

Differential and linear cryptanalysis are two of the most powerful techniques to analyze symmetric-key primitives. For modern ciphers, resistance against these attacks is therefore a mandatory design criterion. In this paper, we propose a novel technique to prove security bounds against both differential and linear cryptanalysis. We use mixed-integer linear programming (MILP), a method that is frequently used in business and economics to solve optimization problems. Our technique significantly reduces the workload of designers and cryptanalysts, because it only involves writing out simple equations that are input into an MILP solver. As very little programming is required, both the time spent on cryptanalysis and the possibility of human errors are greatly reduced. Our method is used to analyze Enocoro-128v2, a stream cipher that consists of 96 rounds. We prove that 38 rounds are sufficient for security against differential cryptanalysis, and 61 rounds for security against linear cryptanalysis. We also illustrate our technique by calculating the number of active S-boxes for AES.

Keywords

Differential cryptanalysis Linear Cryptanalysis Mixed-Integer Linear Programming MILP Enocoro AES CPLEX 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. J. Cryptology 4(1), 3–72 (1991)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Biryukov, A., Gong, G., Stinson, D.R. (eds.): SAC 2010. LNCS, vol. 6544. Springer, Heidelberg (2011)MATHGoogle Scholar
  3. 3.
    Biryukov, A., Nikolić, I.: Search for Related-Key Differential Characteristics in DES-Like Ciphers. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 18–34. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Bodganov, A.: Personal Communication (2011)Google Scholar
  5. 5.
    Bogdanov, A.: Analysis and Design of Block Cipher Constructions. Ph.D. thesis, Ruhr University Bochum (2009)Google Scholar
  6. 6.
    Bogdanov, A.: On unbalanced Feistel networks with contracting MDS diffusion. Des. Codes Cryptography 59(1-3), 35–58 (2011)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Borghoff, J., Knudsen, L.R., Stolpe, M.: Bivium as a Mixed-Integer Linear Programming Problem. In: Parker, M.G. (ed.) Cryptography and Coding 2009. LNCS, vol. 5921, pp. 133–152. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Bouillaguet, C., Fouque, P.A., Leurent, G.: Security Analysis of SIMD. In: Biryukov, et al. (eds.) [2], pp. 351–368Google Scholar
  9. 9.
    McDonald, C., Charnes, C., Pieprzyk, J.: An Algebraic Analysis of Trivium Ciphers based on the Boolean Satisfiability Problem. Cryptology ePrint Archive, Report 2007/129 (2007), http://eprint.iacr.org/
  10. 10.
    Daemen, J., Clapp, C.S.K.: Fast Hashing and Stream Encryption with PANAMA. In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 60–74. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Daemen, J., Govaerts, R., Vandewalle, J.: Resynchronization Weaknesses in Synchronous Stream Ciphers. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 159–167. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  12. 12.
    Daemen, J., Rijmen, V.: The Wide Trail Design Strategy. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 222–238. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Springer (2002)Google Scholar
  14. 14.
    Hell, M., Johansson, T.: Security Evaluation of Stream Cipher Enocoro-128v2. CRYPTREC Technical Report (2010)Google Scholar
  15. 15.
    Muto, K., Watanabe, D., Kaneko, T.: Strength evaluation of Enocoro-128 against LDA and its Improvement. In: Symposium on Cryptography and Information Security, pp. 4A1–1 (2008) (in Japanese)Google Scholar
  16. 16.
    Kanda, M.: Practical Security Evaluation against Differential and Linear Cryptanalyses for Feistel Ciphers with SPN Round Function. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 324–338. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Okamoto, K., Muto, K., Kaneko, T.: Security evaluation of Pseudorandom Number Generator Enocoro-80 against Differential/Linear Cryptanalysis (II). In: Symposium on Cryptography and Information Security, pp. 20–23 (2009) (in Japanese)Google Scholar
  18. 18.
    Konosu, K., Muto, K., Furuichi, H., Watanabe, D., Kaneko, T.: Security evaluation of Enocoro-128 ver.1.1 against resynchronization attack. IEICE Technical Report, ISEC2007-147 (2008) (in Japanese)Google Scholar
  19. 19.
    Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  20. 20.
    Matsui, M.: On Correlation between the Order of S-Boxes and the Strength of DES. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 366–375. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  21. 21.
    Muto, K., Watanabe, D., Kaneko, T.: Security evaluation of Enocoro-80 against linear resynchronization attack. In: Symposium on Cryptography and Information Security (2008) (in Japanese)Google Scholar
  22. 22.
    Raddum, H.: Cryptanalytic Results on Trivium. eSTREAM report 2006/039 (2006), http://www.ecrypt.eu.org/stream/triviump3.html
  23. 23.
    Schrage, L.: Optimization Modeling with LINGO. Lindo Systems (1999), http://www.lindo.com
  24. 24.
    Shibutani, K.: On the Diffusion of Generalized Feistel Structures Regarding Differential and Linear Cryptanalysis. In: Biryukov, et al. (eds.) [2], pp. 211–228Google Scholar
  25. 25.
    Watanabe, D., Kaneko, T.: A construction of light weight Panama-like keystream generator. IEICE Technical Report, ISEC2007-78 (2007) (in Japanese)Google Scholar
  26. 26.
    Watanabe, D., Okamoto, K., Kaneko, T.: A Hardware-Oriented Light Weight Pseudo-Random Number Generator Enocoro-128v2. In: The Symposium on Cryptography and Information Security, pp. 3D1–3 (2010) (in Japanese)Google Scholar
  27. 27.
    Watanabe, D., Owada, T., Okamoto, K., Igarashi, Y., Kaneko, T.: Update on Enocoro Stream Cipher. In: ISITA, pp. 778–783. IEEE (2010)Google Scholar
  28. 28.
    Wu, S., Wang, M.: Security evaluation against differential cryptanalysis for block cipher structures. Cryptology ePrint Archive, Report 2011/551 (2011), http://eprint.iacr.org/

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nicky Mouha
    • 1
    • 3
  • Qingju Wang
    • 1
    • 2
    • 3
  • Dawu Gu
    • 2
  • Bart Preneel
    • 1
    • 3
  1. 1.Department of Electrical Engineering ESAT/SCD-COSICKatholieke Universiteit LeuvenHeverleeBelgium
  2. 2.Department of Computer Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina
  3. 3.Interdisciplinary Institute for BroadBand Technology (IBBT)Belgium

Personalised recommendations