A Generic Construction from Selective-IBE to Public-Key Encryption with Non-interactive Opening

  • Jiang Zhang
  • Xiang Xie
  • Rui Zhang
  • Zhenfeng Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7537)

Abstract

Public-key encryption schemes with non-interactive opening (PKENO) allow a receiver who received a ciphertext c to non-interactively convince third parties that the decryption of c is what he has claimed, without compromising the scheme’s security. In this work, we present a generic construction from identity-based encryption scheme, which is secure against selective-ID and chosen plaintext attack (IND-sID-CPA), to PKENO with chameleon hash instead of the one-time signature technology. Our construction gives new view of IBE-to-PKENO technique, and some previously known PKENO schemes can be viewed as concrete instantiations of our generic construction. At last, we also give a new instantiation, which is (slightly) more efficient than the best known scheme [13].

Keywords

Generic Construction Random Oracle Model Identity Base Encryption Random Coin Collision Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe, M., Cui, Y., Imai, H., Kiltz, E.: Efficient hybrid encryption from ID-based encryption. Designs, Codes and Cryptography 54(3), 205–240 (2010)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption Without Random Oracles. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Boyar, J.F., Kurtz, S.A., Krentel, M.W.: A discrete logarithm implementation of perfect zero-knowledge blobs. Journal of Cryptology 2, 63–76 (1990)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-based techniques. In: Proceedings of the 12th ACM Conference on Computer and Communications Security, CCS 2005, pp. 320–329. ACM, New York (2005)CrossRefGoogle Scholar
  6. 6.
    Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based Encryption. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Damgård, I., Hofheinz, D., Kiltz, E., Thorbek, R.: Public-Key Encryption with Non-interactive Opening. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 239–255. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Damgård, I., Thorbek, R.: Non-interactive Proofs for Integer Multiplication. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 412–429. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Galindo, D.: Breaking and Repairing Damgård et al. Public Key Encryption Scheme with Non-interactive Opening. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 389–398. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Galindo, D., Libert, B., Fischlin, M., Fuchsbauer, G., Lehmann, A., Manulis, M., Schröder, D.: Public-Key Encryption with Non-Interactive Opening: New Constructions and Stronger Definitions. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 333–350. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Gentry, C., Silverberg, A.: Hierarchical ID-Based Cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Krawczyk, H., Rabin, T.: Chameleon hashing and signatures. Preprint, Theory of Cryptography Library (1998)Google Scholar
  13. 13.
    Lai, J., Deng, R.H., Liu, S., Kou, W.: Efficient CCA-Secure PKE from Identity-Based Techniques. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 132–147. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  15. 15.
    Zhang, R.: Tweaking TBE/IBE to PKE Transforms with Chameleon Hash Functions. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 323–339. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jiang Zhang
    • 1
  • Xiang Xie
    • 1
  • Rui Zhang
    • 1
  • Zhenfeng Zhang
    • 1
  1. 1.State Key Laboratory of Information Security, Institute of SoftwareChinese Academy of SciencesBeijingChina

Personalised recommendations