Advertisement

Ripple Down Rules for Vietnamese Named Entity Recognition

  • Dat Ba Nguyen
  • Son Bao Pham
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7653)

Abstract

One of the biggest problems with rule based systems is how to avoid the conflict between rules when a new rule is added. Ripple Down Rules (RDR) is considered a good systematic approach to address this for classification problems. In this paper, we present a system using RDR to build the set of rules for Vietnamese Named Entity Recognition which is important for many natural language processing tasks. Experimental results on comparing the proposed approach with a standard method where rules are added in an ad-hoc manner prove to be very promising.

Keywords

Ripple Down Rule Named Entity Recognition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maynard, D., Tablan, V., Ursu, C., Cunningham, H., Wilks, Y.: Named entity recognition from diverse text types. In: Proceedings of the Recent Advances in Natural Language Processing 2001 Conference, pp. 257–274 (2001)Google Scholar
  2. 2.
    Bikel, D.M., Miller, S., Schwartz, R., Weischedel, R.: Nymble: A high-performance learning name-finder. In: Proceedings of the Fifth Conference on Applied Natural Language Processing, pp. 194–201. Association for Computational Linguistics (1997)Google Scholar
  3. 3.
    Mansouri, A., Affendy, L.S., Mamat, A.: A new fuzzy support vector machine method for named entity recognition. In: Proceedings of the 2008 International Conference on Computer Science and Information Technology, pp. 24–28. IEEE Computer Society (2008)Google Scholar
  4. 4.
    Srihari, R., Niu, C., Li, W.: A hybrid approach for named entity and sub-type tagging. In: Proceedings of the Sixth Conference on Applied Natural Language Processing, pp. 247–254. Association for Computational Linguistics (2000)Google Scholar
  5. 5.
    Nguyen, T.-V.T., Cao, T.H.: Vn-kim ie: Automatic extraction of vietnamese named-entities on the web. New Gen. Comput., 277–292 (2007)Google Scholar
  6. 6.
    Thao, P.T.X., Tri, T.Q., Dien, D., Collier, N.: Named entity recognition in vietnamese using classifier voting. ACM Transactions on Asian Language Information Processing (TALIP) (2007)Google Scholar
  7. 7.
    Nguyen, D.B., Hoang, S.H., Pham, S.B., Nguyen, T.P.: Named Entity Recognition for Vietnamese. In: Nguyen, N.T., Le, M.T., Świątek, J. (eds.) Intelligent Information and Database Systems. LNCS, vol. 5991, pp. 205–214. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Edwards, G., Compton, P., Malor, R., Srinivasan, A., Lazarus, L.: Peirs: A pathologist maintained expert system for the interpretation of chemical pathology reports. Pathology, 27–34 (1993)Google Scholar
  9. 9.
    Richards, D.: Two decades of ripple down rules research. Knowl. Eng. Rev., 159–184 (2009)Google Scholar
  10. 10.
    Kerr, J., Compton, P.: Interactive learning when human and machine utilise different feature spaces. In: Pacific Rim Knowledge Acquisition Workshop (2002)Google Scholar
  11. 11.
    Finlayson, A., Compton, P.: Incremental knowledge acquisition using rdr for soccer simulation. In: Pacific Rim Knowledge Acquisition Workshop (2004)Google Scholar
  12. 12.
    Kwok, R.B.H.: Using Ripple Down Rules for Actions and Planning. In: Ishizuka, M., Sattar, A. (eds.) PRICAI 2002. LNCS (LNAI), vol. 2417, p. 604. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Ramadan, Z., Mulholland, M., Hibbert, D., Preston, P., Compton, P., Haddad, P.R.: Towards an expert system in ion-exclusion chromatography by means of multiple classification ripple-down rules. Journal of Chromatography (1998)Google Scholar
  14. 14.
    Richards, D., Compton, P.: Revisiting sisyphus i - an incremental approach to resource allocation using ripple down rules. In: Banff. SRDG Publications, University of Calgary (1999)Google Scholar
  15. 15.
    Beydoun, G., Hoffmann, A.: Incremental acquisition of search knowledge. Int. J. Hum.-Comput. Stud., 493–530 (2000)Google Scholar
  16. 16.
    Bekmann, J.P., Hoffmann, A.: Improved knowledge acquisition for high-performance heuristic search. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence, pp. 41–46. Morgan Kaufmann Publishers Inc. (2005)Google Scholar
  17. 17.
    Nguyen, P.T., Vu, X.L., Nguyen, T.M.H., Nguyen, V.H., Le, H.P.: Building a large syntactically-annotated corpus of vietnamese. In: Proceedings of the Third Linguistic Annotation Workshop, pp. 182–185. Association for Computational Linguistics (2009)Google Scholar
  18. 18.
    Pham, D., Tran, G., Pham, S.: A hybrid approach to vietnamese word segmentation using part of speech tags. In: Proceedings of the 2009 International Conference on Knowledge and Systems Engineering, pp. 154–161. IEEE Computer Society (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dat Ba Nguyen
    • 1
    • 3
  • Son Bao Pham
    • 1
    • 2
  1. 1.Faculty of Information Technology, University of Engineering and TechnologyVietnam National UniversityHanoiVietnam
  2. 2.Information Technology InstituteVietnam National UniversityHanoiVietnam
  3. 3.Max-Planck Institute for InformaticsGermany

Personalised recommendations