Advertisement

On C-Learnability in Description Logics

  • Ali Rezaei Divroodi
  • Quang-Thuy Ha
  • Linh Anh Nguyen
  • Hung Son Nguyen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7653)

Abstract

We prove that any concept in any description logic that extends \(\mathcal{ALC}\) with some features amongst I (inverse), Q k (quantified number restrictions with numbers bounded by a constant k), Self (local reflexivity of a role) can be learnt if the training information system is good enough. That is, there exists a learning algorithm such that, for every concept C of those logics, there exists a training information system consistent with C such that applying the learning algorithm to the system results in a concept equivalent to C.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): Description Logic Handbook. Cambridge University Press (2002)Google Scholar
  2. 2.
    Badea, L., Nienhuys-Cheng, S.-H.: A Refinement Operator for Description Logics. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 40–59. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Cohen, W.W., Hirsh, H.: Learning the Classic description logic: Theoretical and experimental results. In: Proceedings of KR 1994, pp. 121–133 (1994)Google Scholar
  4. 4.
    Divroodi, A.R., Nguyen, L.A.: On bisimulations for description logics. CoRR, abs/1104.1964 (2011); appeared also in Proceedings of CS&P 2011, pp. 99–110 (2011)Google Scholar
  5. 5.
    Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL Concept Learning in Description Logics. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 107–121. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Ha, Q.-T., Hoang, T.-L.-G., Nguyen, L.A., Nguyen, H.S., Szałas, A., Tran, T.-L.: A bisimulation-based method of concept learning for knowledge bases in description logics. Accepted for SoICT 2012 (2012)Google Scholar
  7. 7.
    Iannone, L., Palmisano, I., Fanizzi, N.: An algorithm based on counterfactuals for concept learning in the Semantic Web. Appl. Intell. 26(2), 139–159 (2007)CrossRefGoogle Scholar
  8. 8.
    Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement operators. Machine Learning 78(1-2), 203–250 (2010)CrossRefGoogle Scholar
  9. 9.
    Nguyen, L.A.: An efficient tableau prover using global caching for the description logic \(\mathcal{ALC}\). Fundamenta Informaticae 93(1-3), 273–288 (2009)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Nguyen, L.A., Szałas, A.: Logic-Based Roughification. In: Skowron, A., Suraj, Z. (eds.) Rough Sets and Intelligent Systems. ISRL, vol. 42, pp. 517–543. Springer, Heidelberg (2013)Google Scholar
  11. 11.
    Tran, T.-L., Ha, Q.-T., Hoang, T.-L.-G., Nguyen, L.A., Nguyen, H.S., Szałas, A.: Concept learning for description logic-based information systems. Accepted for KSE 2012 (2012)Google Scholar
  12. 12.
    Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ali Rezaei Divroodi
    • 1
  • Quang-Thuy Ha
    • 2
  • Linh Anh Nguyen
    • 1
  • Hung Son Nguyen
    • 1
  1. 1.Faculty of Mathematics, Informatics and MechanicsUniversity of WarsawWarsawPoland
  2. 2.Faculty of Information Technology, College of TechnologyVietnam National UniversityHanoiVietnam

Personalised recommendations