On C-Learnability in Description Logics

  • Ali Rezaei Divroodi
  • Quang-Thuy Ha
  • Linh Anh Nguyen
  • Hung Son Nguyen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7653)


We prove that any concept in any description logic that extends \(\mathcal{ALC}\) with some features amongst I (inverse), Q k (quantified number restrictions with numbers bounded by a constant k), Self (local reflexivity of a role) can be learnt if the training information system is good enough. That is, there exists a learning algorithm such that, for every concept C of those logics, there exists a training information system consistent with C such that applying the learning algorithm to the system results in a concept equivalent to C.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): Description Logic Handbook. Cambridge University Press (2002)Google Scholar
  2. 2.
    Badea, L., Nienhuys-Cheng, S.-H.: A Refinement Operator for Description Logics. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 40–59. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Cohen, W.W., Hirsh, H.: Learning the Classic description logic: Theoretical and experimental results. In: Proceedings of KR 1994, pp. 121–133 (1994)Google Scholar
  4. 4.
    Divroodi, A.R., Nguyen, L.A.: On bisimulations for description logics. CoRR, abs/1104.1964 (2011); appeared also in Proceedings of CS&P 2011, pp. 99–110 (2011)Google Scholar
  5. 5.
    Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL Concept Learning in Description Logics. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 107–121. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Ha, Q.-T., Hoang, T.-L.-G., Nguyen, L.A., Nguyen, H.S., Szałas, A., Tran, T.-L.: A bisimulation-based method of concept learning for knowledge bases in description logics. Accepted for SoICT 2012 (2012)Google Scholar
  7. 7.
    Iannone, L., Palmisano, I., Fanizzi, N.: An algorithm based on counterfactuals for concept learning in the Semantic Web. Appl. Intell. 26(2), 139–159 (2007)CrossRefGoogle Scholar
  8. 8.
    Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement operators. Machine Learning 78(1-2), 203–250 (2010)CrossRefGoogle Scholar
  9. 9.
    Nguyen, L.A.: An efficient tableau prover using global caching for the description logic \(\mathcal{ALC}\). Fundamenta Informaticae 93(1-3), 273–288 (2009)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Nguyen, L.A., Szałas, A.: Logic-Based Roughification. In: Skowron, A., Suraj, Z. (eds.) Rough Sets and Intelligent Systems. ISRL, vol. 42, pp. 517–543. Springer, Heidelberg (2013)Google Scholar
  11. 11.
    Tran, T.-L., Ha, Q.-T., Hoang, T.-L.-G., Nguyen, L.A., Nguyen, H.S., Szałas, A.: Concept learning for description logic-based information systems. Accepted for KSE 2012 (2012)Google Scholar
  12. 12.
    Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ali Rezaei Divroodi
    • 1
  • Quang-Thuy Ha
    • 2
  • Linh Anh Nguyen
    • 1
  • Hung Son Nguyen
    • 1
  1. 1.Faculty of Mathematics, Informatics and MechanicsUniversity of WarsawWarsawPoland
  2. 2.Faculty of Information Technology, College of TechnologyVietnam National UniversityHanoiVietnam

Personalised recommendations