An Intelligent Patient Monitoring System

  • Rui Rodrigues
  • Pedro Gonçalves
  • Miguel Miranda
  • Carlos Portela
  • Manuel Santos
  • José Neves
  • António Abelha
  • José Machado
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7661)


Intensive Care Units (ICUs) are a good environment for the application of intelligent systems in the healthcare arena, due to its critical environment that requires diagnose, monitoring and treatment of patients with serious illnesses. An intelligent decision support system - INTCare, was developed and tested in CHP (Centro Hospitalar do Porto), a hospital in Oporto, Portugal. The need to detect the presence or absence of the patient in bed, in order to stop the collection of redundant data concerning about the patient vital status led to the development of an RFID localisation and monitoring system - PaLMS, able to uniquely and unambiguously identify a patient and perceive its presence in bed in an ubiquitous manner, making the process of data collection and alert event more accurate. An intelligent multi-agent system for integration of PaLMS in the hospital’s platform for interoperability (AIDA) was also developed, using the characteristics of intelligent agents for the communication process between the RFID equipment, the INTCare module and the Patient Management System (PMS), using the HL7 standard embedded in agent behaviours.


Medical Informatics Patient Monitoring System Intensive Care Unit Ambient intelligence RFID Multi-Agent System HL7 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hl7 website (May 2012),
  2. 2.
    Abelha, A., Machado, J., Santos, M., Allegro, S., Paiva, M., Neves, J.: Agency for integration, diffusion and archive of medical information. In: Proceedings of the Third IASTED International Conference - Artificial Intelligence and Applications, Benalmadena, Spain (2003)Google Scholar
  3. 3.
    Augusto, J., Mccullagh, P.: Ambient intelligence: Concepts and applications. Computer Science and Information Systems 4(1), 1–27 (2007)CrossRefGoogle Scholar
  4. 4.
    Benini, L., Farella, E., Guiducci, C.: Wireless sensor networks: Enabling technology for ambient intelligence. Microelectronics Journal 37(12), 1639–1649 (2006)CrossRefGoogle Scholar
  5. 5.
    Dağtaş, S., Pekhteryev, G., Şahinoğlu, Z., Çam, H., Challa, N.: Real-time and secure wireless health monitoring. International Journal of Telemedicine and Applications 2008(135808) (2008)Google Scholar
  6. 6.
    Dolin, R.H., Alschuler, L., Beebe, C., Biron, P.V., Boyer, S.L., Essin, D., Kimber, E., Lincoln, T., Mattison, J.E.: The HL7 Clinical Document Architecture. Journal of the American Medical Informatics Association 8(6), 552–569 (2001)CrossRefGoogle Scholar
  7. 7.
    Fisher, J.A., Monahan, T.: Tracking the social dimensions of rfid systems in hospitals. International Journal of Medical Informatics 77(3), 176–183 (2008)CrossRefGoogle Scholar
  8. 8.
    Isern, D., Sánchez, D., Moreno, A.: Agents applied in health care: A review. International Journal of Medical Informatics 79(3), 145–166 (2010)CrossRefGoogle Scholar
  9. 9.
    Jennings, N.R.: On agent-based software engineering. Artificial Intelligence 117(2), 277–296 (2000)zbMATHCrossRefGoogle Scholar
  10. 10.
    Lopez, D.M., Blobel, B.G.: A development framework for semantically interoperable health information systems. International Journal of Medical Informatics 78(2), 83–103 (2009)CrossRefGoogle Scholar
  11. 11.
    Machado, J., Abelha, A., Neves, J., Santos, M.: Ambient intelligence in medicine. In: IEEE 2006 Biomedical Circuits and Systems Conference Healthcare Technology, BioCAS 2006, pp. 94–97 (2006)Google Scholar
  12. 12.
    Machado, J., Alves, V., Abelha, A., Neves, J.: Ambient intelligence via multiagent systems in the medical arena. Engineering Intelligent Systems for Electrical Engineering and Communications 15(3), 151–157 (2007)Google Scholar
  13. 13.
    Machado, J., Miranda, M., Abelha, A., Neves, J., Neves, J.: Modeling Medical Ethics through Intelligent Agents. In: Godart, C., Gronau, N., Sharma, S., Canals, G. (eds.) I3E 2009. IFIP AICT, vol. 305, pp. 112–122. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Miranda, M., Pontes, G., Gonçalves, P., Peixoto, H., Santos, M., Abelha, A., Machado, J.: Modelling Intelligent Behaviours in Multi-agent Based HL7 Services. In: Lee, R. (ed.) Computer and Information Science 2010. SCI, vol. 317, pp. 95–106. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Miranda, M., Abelha, A., Santos, M., Machado, J., Neves, J.: A Group Decision Support System for Staging of Cancer. In: Weerasinghe, D. (ed.) eHealth 2008. LNCIST, vol. 1, pp. 114–121. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Ohe, K., Kaihara, S.: Implementation of hl7 to client-server hospital information system (his) in the university of tokyo hospital. Journal of Medical Systems 20, 197–205 (1996)CrossRefGoogle Scholar
  17. 17.
    Orwat, C., Graefe, A., Faulwasser, T.: Towards pervasive computing in health care - a literature review. BMC Med. Inform. Decis. Mak. 8, 26+ (2008)CrossRefGoogle Scholar
  18. 18.
    Portela, C.F., Santos, M.F., Silva, Á., Machado, J., Abelha, A.: Enabling a Pervasive Approach for Intelligent Decision Support in Critical Health Care. In: Cruz-Cunha, M.M., Varajão, J., Powell, P., Martinho, R. (eds.) CENTERIS 2011, Part III. CCIS, vol. 221, pp. 233–243. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Ribeiro, J.V., Geirinhas, P.M.: Icnp in sonho. In: Mortensen, R.A. (ed.) ICNP in Europe: Telenurse. Technology and Informatics, pp. 131–136. IOS Press (1997)Google Scholar
  20. 20.
    Santos, M.F., Portela, F., Vilas-Boas, M., Machado, J., Abelha, A., Neves, J., Silva, A., Rua, F.: Information architecture for intelligent decision support in intensive medicine. W. Trans. on Comp. 8(5), 810–819 (2009)Google Scholar
  21. 21.
    Varshney, U.: Pervasive healthcare and wireless health monitoring. Mobile Networks and Applications 12, 113–127 (2007)CrossRefGoogle Scholar
  22. 22.
    Vilas-Boas, M., Gago, P., Portela, F., Rua, F., Silva, Á., Santos, M.F.: Distributed and real time data mining in the intensive care unit. In: 19th European Conference on Artificial Intelligence - ECAI Lisbon, pp. 51–55 (2010)Google Scholar
  23. 23.
    Weiser, M.: The computer for the twenty-first century. Scientific American 265(3), 94–104 (1991)CrossRefGoogle Scholar
  24. 24.
    Weiss, G.: Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. The MIT Press (July 2000)Google Scholar
  25. 25.
    Wicks, A.M., Visich, J.K., Suhong, L.: Radio frequency identification applications in hospital environments. Hospital Topics 84(3), 3–8 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rui Rodrigues
    • 1
  • Pedro Gonçalves
    • 1
  • Miguel Miranda
    • 1
  • Carlos Portela
    • 2
  • Manuel Santos
    • 2
  • José Neves
    • 1
  • António Abelha
    • 1
  • José Machado
    • 1
  1. 1.Computer Science and Technology Centre (CCTC)University of MinhoBragaPortugal
  2. 2.ALGORITMI CenterUniversity of MinhoGuimarãesPortugal

Personalised recommendations