An Efficient Reasoning Method for Dependencies over Similarity and Ordinal Data

  • Radim Belohlavek
  • Pablo Cordero
  • Manuel Enciso
  • Angel Mora
  • Vilem Vychodil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7647)


We present a new axiomatization of logic for dependencies in data with grades, including ordinal data and data in an extension of Codd’s model that takes into account similarity relations on domains. The axiomatization makes possible an efficient method for automated reasoning for such dependencies that is presented in the paper. The presented method of automatic reasoning is based on a new simplification equivalence which allows to simplify sets of dependencies while retaining their semantic closures. We include two algorithms for computing closures and checking semantic entailment from sets of dependencies and present experimental comparison showing that the algorithms based on the new axiomatization outperform the algorithms proposed in the past.


Ordinal Data Axiomatic System Automate Reasoning Heyting Algebra Deduction Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aguilera, G., Cordero, P., Enciso, M., Mora, A., de Guzmán, I.P.: A Non-explosive Treatment of Functional Dependencies Using Rewriting Logic. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 31–40. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Armstrong, W.: Dependency structures of data base relationships. In: IFIP Congress, pp. 580–583 (1974)Google Scholar
  3. 3.
    Beeri, C., Bernstein, P.A.: Computational problems related to the design of normal form relational schemas. ACM Trans. Database Syst. 4, 30–59 (1979)CrossRefGoogle Scholar
  4. 4.
    Belohlavek, R., Vychodil, V.: Axiomatizations of fuzzy attribute logic. In: IICAI 2005, pp. 2178–2193 (2005)Google Scholar
  5. 5.
    Bělohlávek, R., Vychodil, V.: Attribute Implications in a Fuzzy Setting. In: Missaoui, R., Schmidt, J. (eds.) ICFCA 2006. LNCS (LNAI), vol. 3874, pp. 45–60. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Bělohlávek, R., Vychodil, V.: Data Tables with Similarity Relations: Functional Dependencies, Complete Rules and Non-redundant Bases. In: Li Lee, M., Tan, K.-L., Wuwongse, V. (eds.) DASFAA 2006. LNCS, vol. 3882, pp. 644–658. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Belohlavek, R., Vychodil, V.: Properties of models of fuzzy attribute implications. In: SCIS & ISIS 2006, pp. 291–296 (2006)Google Scholar
  8. 8.
    Belohlavek, R., Vychodil, V.: Logical Foundations for Similarity-Based Databases. In: Chen, L., Liu, C., Liu, Q., Deng, K. (eds.) DASFAA 2009. LNCS, vol. 5667, pp. 137–151. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Belohlavek, R., Vychodil, V.: Query systems in similarity-based databases: logical foundations, expressive power, and completeness. In: ACM SAC, pp. 1648–1655 (2010)Google Scholar
  10. 10.
    Cordero, P., Enciso, M., Mora, A., de Guzmán, I.P.: SLFD logic: Elimination of data redundancy in knowledge representation. In: Garijo, F.J., Riquelme, J.-C., Toro, M. (eds.) IBERAMIA 2002. LNCS (LNAI), vol. 2527, pp. 141–150. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Fagin, R.: Combining fuzzy information: an overview. SIGMOD Record 31(2), 109–118 (2002)CrossRefGoogle Scholar
  12. 12.
    Gerla, G.: Fuzzy Logic. Mathematical Tools for Approximate Reasoning. Kluwer Academic Publishers, Dordrecht (2001)zbMATHGoogle Scholar
  13. 13.
    Goguen, J.A.: The logic of inexact concepts. Synthese 19(3–4), 325–373 (1969)zbMATHCrossRefGoogle Scholar
  14. 14.
    Gottwald, S.: A Treatise on Many-Valued Logics. Studies in Logic and Computation, vol. 98. Research Studies Press, Baldock (2000)Google Scholar
  15. 15.
    Gottwald, S.: Mathematical fuzzy logics. The Bulletin of Symbolic Logic 14(2), 210–244 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, Cambridge (2009)zbMATHGoogle Scholar
  17. 17.
    Hájek, P.: Metamathematics of Fuzzy Logic. Trends in Logic: Studia Logica Library. Kluwer Academic Publishers, Dordrecht (1998)zbMATHCrossRefGoogle Scholar
  18. 18.
    Hájek, P.: On very true. Fuzzy Sets and Systems 124(3), 329–333 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Maier, D.: The theory of relational databases. Computer software engineering series. Computer Science Press (1983)Google Scholar
  20. 20.
    Mora, A., Aguilera, G., Enciso, M., Cordero, P., Perez de Guzman, I.: A new closure algorithm based in logic: SLFD-Closure versus classical closures. Inteligencia Artificial, Revista Iberoamericana de IA 10(31), 31–40 (2006)Google Scholar
  21. 21.
    Mora, A., Cordero, P., Enciso, M., Fortes, I., Aguilera, G.: Closure via functional dependence simplification. International Journal of Computer Mathematics 89(4), 510–526 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Pavelka, J.: On fuzzy logic I, II, III. Mathematical Logic Quarterly 25, 45–52 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Raju, K.V.S.V.N., Majumdar, A.K.: Fuzzy functional dependencies and lossless join decomposition of fuzzy relational database systems. ACM Transactions on Database Systems (TODS) 13, 129–166 (1988) ACM ID: 42344 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Radim Belohlavek
    • 1
  • Pablo Cordero
    • 2
  • Manuel Enciso
    • 3
  • Angel Mora
    • 2
  • Vilem Vychodil
    • 1
  1. 1.Data Analysis and Modeling Laboratory (DAMOL), Dept. Computer SciencePalacky UniversityOlomoucCzech Republic
  2. 2.Dept. Applied MathematicsUniversity of MálagaSpain
  3. 3.Dept. Languages and Computer SciencesUniversity of MálagaSpain

Personalised recommendations