Representing Fuzzy Logic Programs by Graded Attribute Implications

  • Tomas Kuhr
  • Vilem Vychodil
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7647)

Abstract

We present a link between two types of logic systems for reasoning with graded if-then rules: the system of fuzzy logic programming (FLP) in sense of Vojtáš and the system of fuzzy attribute logic (FAL) in sense of Belohlavek and Vychodil. We show that each finite theory consisting of formulas of FAL can be represented by a definite program so that the semantic entailment in FAL can be characterized by correct answers for the program. Conversely, we show that for each definite program there is a collection of formulas of FAL so that the correct answers can be represented by the entailment in FAL. Using the link, we can transport results from FAL to FLP and vice versa which gives us, e.g., a syntactic characterization of correct answers based on Pavelka-style Armstrong-like axiomatization of FAL.

Keywords

logic programming attribute implications functional dependencies ordinal scales residuated lattices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belohlavek, R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer Academic Publishers, Norwell (2002)MATHCrossRefGoogle Scholar
  2. 2.
    Bělohlávek, R., Vychodil, V.: Data Tables with Similarity Relations: Functional Dependencies, Complete Rules and Non-redundant Bases. In: Li Lee, M., Tan, K.-L., Wuwongse, V. (eds.) DASFAA 2006. LNCS, vol. 3882, pp. 644–658. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Belohlavek, R., Vychodil, V.: Fuzzy attribute logic over complete residuated lattices. Journal of Exp. & Theoretical Artif. Int. 18(4), 471–480 (2006)MATHCrossRefGoogle Scholar
  4. 4.
    Belohlavek, R., Vychodil, V.: Query systems in similarity-based databases: logical foundations, expressive power, and completeness. In: ACM Symposium on Applied Computing (SAC), pp. 1648–1655. ACM (2010)Google Scholar
  5. 5.
    Viegas Damásio, C., Moniz Pereira, L.: Monotonic and Residuated Logic Programs. In: Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 748–759. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Esteva, F., Godo, L.: Monoidal t-norm based logic: towards a logic for left-continuous t-norms. Fuzzy Sets and Systems 124(3), 271–288 (2001)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Goguen, J.A.: The logic of inexact concepts. Synthese 19, 325–373 (1979)CrossRefGoogle Scholar
  8. 8.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht (1998)MATHCrossRefGoogle Scholar
  9. 9.
    Hájek, P.: On very true. Fuzzy Sets and Systems 124(3), 329–333 (2001)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms, 1st edn. Springer (2000)Google Scholar
  11. 11.
    Lloyd, J.W.: Foundations of logic programming. Springer-Verlag New York, Inc., New York (1984)MATHCrossRefGoogle Scholar
  12. 12.
    Medina, J., Ojeda-Aciego, M., Vojtáš, P.: A Procedural Semantics for Multi-adjoint Logic Programming. In: Brazdil, P.B., Jorge, A.M. (eds.) EPIA 2001. LNCS (LNAI), vol. 2258, pp. 290–297. Springer, Heidelberg (2001)Google Scholar
  13. 13.
    Mendelson, E.: Introduction to mathematical logic. Chapman and Hall (1987)Google Scholar
  14. 14.
    Nilsson, U., Maluszynski, J.: Logic, Programming, and PROLOG, 2nd edn. John Wiley & Sons, Inc., New York (1995)Google Scholar
  15. 15.
    Pavelka, J.: On fuzzy logic I, II, III. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 25, 45–52, 119–134, 447–464 (1979)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Takeuti, G., Titani, S.: Globalization of intuitionistic set theory. Annals of Pure and Applied Logic 33, 195–211 (1987)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Vojtáš, P.: Fuzzy logic programming. Fuzzy Sets and Systems 124(3), 361–370 (2001)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Wechler, W.: Universal algebra for computer scientists. EATCS Monographs on Theoretical Computer Science, vol. 25. Springer, Heidelberg (1992)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tomas Kuhr
    • 1
  • Vilem Vychodil
    • 1
  1. 1.DAMOL (Data Analysis and Modeling Laboratory) Dept. Computer SciencePalacky UniversityOlomoucCzech Republic

Personalised recommendations