Parameterized Domination in Circle Graphs

  • Nicolas Bousquet
  • Daniel Gonçalves
  • George B. Mertzios
  • Christophe Paul
  • Ignasi Sau
  • Stéphan Thomassé
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7551)

Abstract

A circle graph is the intersection graph of a set of chords in a circle. Keil [Discrete Applied Mathematics, 42(1):51-63, 1993] proved that Dominating Set, Connected Dominating Set, and Total Dominating Set are NP-complete in circle graphs. To the best of our knowledge, nothing was known about the parameterized complexity of these problems in circle graphs. In this paper we prove the following results, which contribute in this direction:
  • Dominating Set, Independent Dominating Set, Connected Dominating Set, Total Dominating Set, and Acyclic Dominating Set are W[1]-hard in circle graphs, parameterized by the size of the solution.

  • Whereas both Connected Dominating Set and Acyclic Dominating Set are W[1]-hard in circle graphs, it turns out that Connected Acyclic Dominating Set is polynomial-time solvable in circle graphs.

  • If T is a given tree, deciding whether a circle graph has a dominating set isomorphic to T is NP-complete when T is in the input, and FPT when parameterized by |V(T)|. We prove that the FPT algorithm is subexponential.

Keywords

circle graphs domination problems parameterized complexity parameterized algorithms dynamic programming constrained domination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley (1974)Google Scholar
  2. 2.
    Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed Parameter Algorithms for Dominated Set and Related Problems on Planar Graphs. Algorithmica 33(4), 461–493 (2002)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Alon, N., Gutner, S.: Kernels for the Dominating Set Problem on Graphs with an Excluded Minor. Electronic Colloquium on Computational Complexity (ECCC) 15(066) (2008)Google Scholar
  4. 4.
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. Journal of Computer and System Sciences 75(8), 423–434 (2009)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Bousquet, N., Gonçalves, D., Mertzios, G.B., Paul, C., Sau, I., Thomassé, S.: Parameterized Domination in Circle Graphs. Manuscript available at http://arxiv.org/abs/1205.3728 (2012)
  6. 6.
    Courcelle, B.: The Monadic Second-Order Logic of Graphs: Definable Sets of Finite Graphs. In: van Leeuwen, J. (ed.) WG 1988. LNCS, vol. 344, pp. 30–53. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  7. 7.
    Cygan, M., Philip, G., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Dominating set is fixed parameter tractable in claw-free graphs. Theoretical Computer Science 412(50), 6982–7000 (2011)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Damaschke, P.: The Hamiltonian Circuit Problem for Circle Graphs is NP-Complete. Information Processing Letters 32(1), 1–2 (1989)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Damian-Iordache, M., Pemmaraju, S.V.: Hardness of Approximating Independent Domination in Circle Graphs. In: Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741, pp. 56–69. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999)CrossRefGoogle Scholar
  11. 11.
    Elmallah, E.S., Stewart, L.K.: Independence and domination in polygon graphs. Discrete Applied Mathematics 44(1-3), 65–77 (1993)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Even, S., Itai, A.: Queues, stacks and graphs. In: Press, A. (ed.) Theory of Machines and Computations, pp. 71–86 (1971)Google Scholar
  13. 13.
    Fellows, M.R., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parameterized complexity of multiple-interval graph problems. Theoretical Computer Science 410(1), 53–61 (2009)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)Google Scholar
  15. 15.
    Fomin, F., Gaspers, S., Golovach, P., Suchan, K., Szeider, S., Jan Van Leeuwen, E., Vatshelle, M., Villanger, Y.: k-Gap Interval Graphs. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 350–361. Springer, Heidelberg (2012), http://arxiv.org/abs/1112.3244 CrossRefGoogle Scholar
  16. 16.
    Garey, M., Johnson, D.: Computers and Intractability. W.H. Freeman, San Francisco (1979)MATHGoogle Scholar
  17. 17.
    Gavril, F.: Algorithms for a maximum clique and a maximum independent set of a circle graph. Networks 3, 261–273 (1973)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Gavril, F.: Minimum weight feedback vertex sets in circle graphs. Information Processing Letters 107(1), 1–6 (2008)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Gioan, E., Paul, C., Tedder, M., Corneil, D.: Circle Graph Recognition in Time O(n + mα(n + m). Manuscript available at http://arxiv.org/abs/1104.3284 (2011)
  20. 20.
    Hedetniemi, S.M., Hedetniemi, S.T., Rall, D.F.: Acyclic domination. Discrete Mathematics 222(1-3), 151–165 (2000)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Jiang, M., Zhang, Y.: Parameterized Complexity in Multiple-Interval Graphs: Domination. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 27–40. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Keil, J.M.: The complexity of domination problems in circle graphs. Discrete Applied Mathematics 42(1), 51–63 (1993)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Keil, J.M., Stewart, L.: Approximating the minimum clique cover and other hard problems in subtree filament graphs. Discrete Applied Mathematics 154(14), 1983–1995 (2006)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Kloks, T.: Treewidth of circle graphs. International Journal of Foundations of Computer Science 7(2), 111–120 (1996)MATHCrossRefGoogle Scholar
  25. 25.
    Marx, D.: Parameterized Complexity of Independence and Domination on Geometric Graphs. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 154–165. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  26. 26.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)Google Scholar
  27. 27.
    Sherwani, N.A.: Algorithms for VLSI Physical Design Automation. Kluwer Academic Press (1992)Google Scholar
  28. 28.
    Spinrad, J.: Recognition of circle graphs. Journal of Algorithms 16(2), 264–282 (1994)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Unger, W.: On the k-Colouring of Circle-Graphs. In: Cori, R., Wirsing, M. (eds.) STACS 1988. LNCS, vol. 294, pp. 61–72. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  30. 30.
    Unger, W.: The Complexity of Colouring Circle Graphs (Extended Abstract). In: Finkel, A., Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577, pp. 389–400. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  31. 31.
    Xu, G., Kang, L., Shan, E.: Acyclic domination on bipartite permutation graphs. Information Processing Letters 99(4), 139–144 (2006)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nicolas Bousquet
    • 1
  • Daniel Gonçalves
    • 1
  • George B. Mertzios
    • 2
  • Christophe Paul
    • 1
  • Ignasi Sau
    • 1
  • Stéphan Thomassé
    • 3
  1. 1.AlGCo Project-TeamCNRS, LIRMMMontpellierFrance
  2. 2.School of Engineering and Computing SciencesDurham UniversityU.K.
  3. 3.Laboratoire LIPU. Lyon, CNRS, ENS Lyon, INRIA, UCBLLyonFrance

Personalised recommendations