Immediate versus Eventual Conversion: Comparing Geodetic and Hull Numbers in P3-Convexity

  • Carmen Cecilia Centeno
  • Lucia Draque Penso
  • Dieter Rautenbach
  • Vinícius Gusmc̃o Pereira de Sá
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7551)


We study the graphs G for which the hull number h(G) and the geodetic number g(G) with respect to P 3-convexity coincide. These two parameters correspond to the minimum cardinality of a set U of vertices of G such that the simple expansion process that iteratively adds to U, all vertices outside of U that have two neighbors in U, produces the whole vertex set of G either eventually or after one iteration, respectively. We establish numerous structural properties of the graphs G with h(G) = g(G), which allow the constructive characterization as well as the efficient recognition of all triangle-free such graphs. Furthermore, we characterize the graphs G that satisfy h(H) = g(H) for every induced subgraph H of G in terms of forbidden induced subgraphs.


Hull number geodetic number P3-convexity irreversible 2-threshold processes triangle-free graphs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balister, P., Bollobás, B., Johnson, J.R., Walters, M.: Random majority percolation. Random Struct. Algorithms 36, 315–340 (2010)zbMATHCrossRefGoogle Scholar
  2. 2.
    Balogh, J., Bollobás, B.: Sharp thresholds in Bootstrap percolation. Physica A 326, 305–312 (2003)zbMATHCrossRefGoogle Scholar
  3. 3.
    Bermond, J.-C., Bond, J., Peleg, D., Perennes, S.: The power of small coalitions in graphs. Discrete Appl. Math. 127, 399–414 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Centeno, C.C., Dourado, M.C., Penso, L.D., Rautenbach, D., Szwarcfiter, J.L.: Irreversible Conversion of Graphs. Theor. Comput. Sci. 412, 3693–3700 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Dreyer Jr., P.A., Roberts, F.S.: Irreversible k-threshold processes: Graph-theoretical threshold models of the spread of disease and of opinion. Discrete Appl. Math. 157, 1615–1627 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of domination in graphs. Marcel Dekker (1998)Google Scholar
  7. 7.
    Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146 (2003)Google Scholar
  8. 8.
    Mustafa, N.H., Pekeč, A.: Listen to your neighbors: How (not) to reach a consensus. SIAM J. Discrete. Math. 17, 634–660 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Nayak, A., Ren, J., Santoro, N.: An improved testing scheme for catastrophic fault patterns. Inf. Process. Lett. 73, 199–206 (2000)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Peleg, D.: Local majorities, coalitions and monopolies in graphs: A review. Theor. Comput. Sci. 282, 231–257 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Rautenbach, D., dos Santos, V., Schäfer, P.M.: Irreversible conversion processes with deadlines (2010) (manuscript)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Carmen Cecilia Centeno
    • 1
  • Lucia Draque Penso
    • 2
  • Dieter Rautenbach
    • 2
  • Vinícius Gusmc̃o Pereira de Sá
    • 1
  1. 1.Instituto de Matemática, NCE, and COPPEUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Institut für Optimierung und Operations ResearchUniversität UlmUlmGermany

Personalised recommendations