Modeling Users’ Mood State to Improve Human-Machine-Interaction

  • Ingo Siegert
  • R. Böck
  • Andreas Wendemuth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7403)


The detection of user emotions plays an important role in Human-Machine-Interaction. By considering emotions, applications such as monitoring agents or digital companions are able to adapt their reaction towards users’ needs and claims. Besides emotions, personality and moods are eminent as well. Standard emotion recognizers do not consider them adequately and therefore neglect a crucial part of user modeling.

The challenge is to gather reliable predictions about the actual mood of the user and, beyond that, represent changes in users’ mood during interaction. In this paper we present a model that incorporates both the tracking of mood changes based on recognized emotions and different personality traits. Furthermore we present a first evaluation on realistic data.


Emotion Mood Personality Simulation of Affect Human-Machine-Interaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    André, E., Klesen, M., Gebhard, P., Allen, S., Rist, T.: Integrating Models of Personality and Emotions into Lifelike Characters. In: Paiva, A.C.R. (ed.) IWAI 1999. LNCS, vol. 1814, pp. 150–165. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Batliner, A., Steidl, S., Schuller, B., Seppi, D., Vogt, T., Wagner, J., Devillers, L., Vidrascu, L., Aharonson, V., Kessous, L., Amir, N.: Whodunnit – Searching for the Most Important Feature Types Signalling Emotion-Related User States in Speech. Computer Speech and Language 25(1), 4–28 (2011)CrossRefGoogle Scholar
  3. 3.
    Becker, P.: Structural and relational analyses of emotions and personality traits. Zeitschrift für Differentielle und Diagnostische Psychologie 22(3), 155–172 (2001)CrossRefGoogle Scholar
  4. 4.
    Becker-Asano, C.: WASABI: Affect Simulation for Agents with Believable Interactivity. Ph.D. thesis, Universität Bielefeld (2008)Google Scholar
  5. 5.
    Biundo, S., Wendemuth, A.: Von kognitiven technischen Systemen zu Companion-Systemen. KI - Künstliche Intelligenz 24, 335–339 (2010)CrossRefGoogle Scholar
  6. 6.
    Busso, C., Deng, Z., Yildirim, S., Bulut, M., Lee, C.M., Kazemzadeh, A., Lee, S., Neumann, U., Narayanan, S.: Analysis of emotion recognition using facial expressions, speech and multimodal information. In: Proc. of the 6th International Conference on Multimodal Interfaces, New York, pp. 205–211 (2004)Google Scholar
  7. 7.
    Davidson, R.J.: On emotion, mood, and related affective constructs. In: Ekman, P. (ed.) The Nature of Emotion: Fundamental Questions. Oxford University Press (1994)Google Scholar
  8. 8.
    Gebhard, P.: ALMA A Layered Model of Affect. In: 4th International Joint Conference of Autonomous Agents & Multi-Agent Systems, pp. 29–36 (2005)Google Scholar
  9. 9.
    Kopp, S., Gesellensetter, L., Krämer, N.C., Wachsmuth, I.: A conversational agent as museum guide: design and evaluation of a real-world application, pp. 329–343. Springer (2005)Google Scholar
  10. 10.
    Larsen, R.J., Fredrickson, B.L.: Measurement issues in emotion research. In: Kahneman, D., Diener, E., Schwarz, N. (eds.) Well-being: Foundations of Hedonic Psychology, pp. 40–60. Russell Sage Foundation (1999)Google Scholar
  11. 11.
    McCrae, R.R., John, O.P.: An introduction to the five-factor model and its applications. Journal of Personality 60(2), 175–215 (1992)CrossRefGoogle Scholar
  12. 12.
    Mehrabian, A.: Analysis of the Big-five Personality Factors in Terms of the PAD Temperament Model. Australian Journal of Psychology 48(2), 86–92 (1996)CrossRefGoogle Scholar
  13. 13.
    Mehrabian, A.: Pleasure-arousal-dominance: A general framework for describing and measuring individual differences in temperament. Current Psychology 14(4), 261–292 (1996)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Morris, W.N.: Mood: the frame of mind. Springer (1989)Google Scholar
  15. 15.
    Picard, R.W.: Affective Computing. MIT Press, Cambridge (2000)Google Scholar
  16. 16.
    Scherer, K.R.: Appraisal considered as a process of multilevel sequential checking. In: Scherer, K., Schorr, A., Johnstone, T. (eds.) Appraisal Processes in Emotion: Theory, Methods, Research, pp. 92–120. Oxford University Press, New York (2001)Google Scholar
  17. 17.
    Walter, S., Scherer, S., Schels, M., Glodek, M., Hrabal, D., Schmidt, M., Böck, R., Limbrecht, K., Traue, H.C., Schwenker, F.: Multimodal Emotion Classification in Naturalistic User Behavior. In: Jacko, J.A. (ed.) HCII 2011, Part III. LNCS, vol. 6763, pp. 603–611. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ingo Siegert
    • 1
  • R. Böck
    • 1
  • Andreas Wendemuth
    • 1
  1. 1.Otto von Guericke University MagdeburgGermany

Personalised recommendations