Advertisement

Infinite Networks of Hubs, Spirals, and Zig-Zag Patterns in Self-sustained Oscillations of a Tunnel Diode and of an Erbium-doped Fiber-ring Laser

  • Ricardo E. Francke
  • Thorsten Pöschel
  • Jason A. C. Gallas
Part of the Studies in Computational Intelligence book series (SCI, volume 459)

Abstract

A remarkably regular organization of spirals converging to a focal point in control parameter space was recently predicted and then observed in a nonlinear circuit containing two diodes. Such spiral organizations are relatively hard to observe experimentally because they usually emerge very compressed. Here we show that a circuit with a tunnel diode displays not one but two large spiral cascades. We show such cascades to exist over wide parameter ranges and, therefore, we expect them to be easier to observe experimentally.

Keywords

Light Emit Diode Lyapunov Exponent Parameter Plane Chaotic Oscillation Control Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonatto, C., Garreau, J.C., Gallas, J.A.C.: Phys. Rev. Lett. 95, 143905 (2005)CrossRefGoogle Scholar
  2. 2.
    Bonatto, C., Gallas, J.A.C.: Phys. Rev. Lett. 101, 054101 (2008); Phil. Trans. Royal Soc. London, Series A 366, 505 (2008)Google Scholar
  3. 3.
    Ramírez-Ávila, G.M., Gallas, J.A.C.: Revista Boliviana de Física 14, 1–9 (2008)Google Scholar
  4. 4.
    Ramírez-Ávila, G.M., Gallas, J.A.C.: Phys. Lett. A 375, 143 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Freire, J.G., Field, R.J., Gallas, J.A.C.: J. Chem. Phys. 131, 044105 (2009)Google Scholar
  6. 6.
    Kovanis, V., Gavrielides, A., Gallas, J.A.C.: Eur. Phys. J. D 58, 181 (2010)Google Scholar
  7. 7.
    Freire, J.G., Gallas, J.A.C.: Phys. Rev. E 82, 037202 (2010)Google Scholar
  8. 8.
    Gallas, J.A.C.: Int. J. Bif. Chaos 20, 197 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Vitolo, R., Glendinning, P., Gallas, J.A.C.: Phys. Rev. E 84, 016216 (2011)Google Scholar
  10. 10.
    Barrio, R., Blesa, F., Serrano, S., Shilnikov, A.: Phys. Rev. E 84, 035201(R) (2011)Google Scholar
  11. 11.
    Bragard, J., Pleiner, H., Suarez, O.J., Vargas, P., Gallas, J.A.C., Laroze, D.: Phys. Rev. E 84, 037202 (2011)Google Scholar
  12. 12.
    Castro, V., Monti, M., Pardo, W.B., Walkenstein, J.A., Rosa Jr., E.: Int. J. Bif. Chaos 17, 956 (2007)MathSciNetGoogle Scholar
  13. 13.
    Zou, Y., Thiel, M., Romano, M.V., Kurths, J., Bi, Q.: Int. J. Bif. Chaos 16, 3567 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Albuquerque, H.A., Rubinger, R.M., Rech, P.C.: Phys. Lett. A 372, 4793 (2008)zbMATHCrossRefGoogle Scholar
  15. 15.
    Celestino, A., Manchein, C., Albuquerque, H.A., Beims, M.W.: Phys. Rev. Lett. 106, 234101 (2011)CrossRefGoogle Scholar
  16. 16.
    Oliveira, D.F.M., Robnik, M., Leonel, E.D.: Chaos 21, 043122 (2011)Google Scholar
  17. 17.
    Oliveira, D.F.M., Leonel, E.D.: New J. Phys. 13, 123012 (2011)CrossRefGoogle Scholar
  18. 18.
    Stegemann, C., Albuquerque, H.A., Rubinger, R.M., Rech, P.C.: Chaos 21, 033105 (2011)Google Scholar
  19. 19.
    Stegemann, C., Albuquerque, H.A., Rech, P.C.: Chaos 20, 023103 (2010)Google Scholar
  20. 20.
    Viana, E.V., Rubinger, R.M., Albuquerque, H.A., de Oliveira, A.G., Ribeiro, G.M.: Chaos 20, 023110 (2010)Google Scholar
  21. 21.
    Cardoso, J.C.D., Albuquerque, H.A., Rubinger, R.M.: Phys. Lett. A 373, 2050 (2009)zbMATHCrossRefGoogle Scholar
  22. 22.
    Stoop, R., Benner, P., Uwate, Y.: Phys. Rev. Lett. 105, 074102 (2010)Google Scholar
  23. 23.
    Pikovsky, A.S., Rabinovich, M.: Sov. Phys. Dokl. 23, 183 (1978); Dokl. Akad. Nauk SSSR 239, 301–304 (1978)Google Scholar
  24. 24.
    Rabinovich, M.: Sov. Phys. Usp. 21, 443–469 (1978); Usp. Fiz. Nauk 125, 123–168 (1978)Google Scholar
  25. 25.
    Pikovsky, A.S., Rabinovich, M.: Physica D 2, 8 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Gollub, J.P., Brunner, T.O., Daly, B.G.: Science 200, 48 (1978)CrossRefGoogle Scholar
  27. 27.
    Gollub, J.P., Romer, E.J., Socolar, J.E.: J. Stat. Phys. 23, 321 (1980)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Linsay, P.S.: Phys. Rev. Lett. 47, 1349 (1981)CrossRefGoogle Scholar
  29. 29.
    Testa, J., Perez, J., Jeffries, C.: Phys. Rev. Lett. 48, 714 (1982)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Octavio, M., DaCosta, A., Aponte, J.: Phys. Rev. A 34, 1512 (1986)CrossRefGoogle Scholar
  31. 31.
    Su, Z., Rollins, R.W., Hunt, E.R.: Phys. Rev. A 40, 2698 (1990)CrossRefGoogle Scholar
  32. 32.
    Carcasses, J.P., Mira, C.: In: Mira, C., Netzer, N., Simo, C., Targonski, G. (eds.) Proc. Int. Conf. on Iteration Theory: ECIT 1989, Batschuns, World Scientific, Singapore (1991)Google Scholar
  33. 33.
    Jones, C.K.R.T., Khibnik, A.I.: Multiple-Time-Scale Dynamical Systems, Mathematics and its Applications, vol. 122. Springer, NY (2000)Google Scholar
  34. 34.
    Grasman, J.: Asymptotic methods for relaxation oscillations and applications, Applied Mathematical Sciences, vol. 63. Springer, NY (1987)CrossRefGoogle Scholar
  35. 35.
    “Shrimps” refer to wide-reaching structures in parameter space formed by a regular set of adjacent windows centered around a main pair of usually intersecting ’superstable’ parabolic arcs (see discussion of Fig. 9.6). Thus, a shrimp is a doubly-infinite mosaic of periodicity domains composed by an innermost main domain plus all the adjacent periodicity domains arising from two symmetrically located period-doubling cascades together with their corresponding domains of chaos [36]. Shrimps should not be confused with their innermost main domain of periodicity or with superstable loci. For details see Refs. [36, 37]Google Scholar
  36. 36.
    Gallas, J.A.C.: Phys. Rev. Lett. 70, 2714 (1993); Physica A 202, 196(1994); Appl. Phys. B 60, S203 (1995), special supplement issue: Festschrift Herbert Walther; Hunt, B.R., Gallas, J.A.C., Grebogi, C., Yorke, J.A., Koçak,H.: Physica D 129, 35(1999)Google Scholar
  37. 37.
    Lorenz, E.N.: Physica D 237, 1689 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Luo, L., Tee, T.J., Chu, P.L.: J. Opt. Soc. Am. B 15, 972 (1998)CrossRefGoogle Scholar
  39. 39.
    Senlin, Y.: Chaos 17, 013106 (2007)Google Scholar
  40. 40.
    Zhang, S., Shen, K.: Chin. Phys. 12, 149 (2003)CrossRefGoogle Scholar
  41. 41.
    Pöschel, T., Gallas, J.A.C.: The distribution of self-pulsing and chaos in control space of an erbium-doped fiber-ring laser, preprintGoogle Scholar
  42. 42.
    Endler, A., Gallas, J.A.C.: Comptes Rendus Mathem (Paris) 342, 681 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Gallas, J.A.C.: Shrimps and the eigenvalue structure of the Hénon map, preprintGoogle Scholar
  44. 44.
    Al-Naimee, K., Marino, F., Ciszak, M., Abdalah, S.F., Meucci, R., Arecchi, F.T.: Eur. Phys. J. D 58, 187 (2010); New J. Phys. 11, 073022 (2009)Google Scholar
  45. 45.
    Marino, F., Ciszak, M., Abdalah, S.F., Al-Naimee, K., Meucci, R., Arecchi, F.T.: Phys. Rev. E 84, 047201 (2011)Google Scholar
  46. 46.
    Marino, F., Marin, F., Balle, S., Piro, O.: Phys. Rev. Lett. 98, 074104 (2007)Google Scholar
  47. 47.
    For a quite early and very nice review of the role of critical points as originally used by Schröder, Fatou and Julia, see H. Cremer, Jahresber. Deutsche Math. Ver. 33,185 (1924)Google Scholar
  48. 48.
    Freire, J.G., Gallas, J.A.C.: Phys. Lett. A 375, 1097 (2011)zbMATHCrossRefGoogle Scholar
  49. 49.
    Freire, J.G., Gallas, J.A.C.: Phys. Chem. Chem. Phys. 13, 12191 (2011)CrossRefGoogle Scholar
  50. 50.
    Freire, J.G., Pöschel, T., Gallas, J.A.C.: Stern-Brocot tree: A unifying organization of oscillations for a broad class of phenomena, submitted for publicationGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ricardo E. Francke
    • 1
  • Thorsten Pöschel
    • 2
  • Jason A. C. Gallas
    • 2
    • 3
    • 1
  1. 1.Instituto de Física da UFRGSPorto AlegreBrazil
  2. 2.Institute for Multiscale SimulationFriedrich-Alexander UniversitätErlangenGermany
  3. 3.Departamento de FísicaUniversidade Federal da ParaíbaJoão PessoaBrazil

Personalised recommendations