A Contextual-Bandit Algorithm for Mobile Context-Aware Recommender System

  • Djallel Bouneffouf
  • Amel Bouzeghoub
  • Alda Lopes Gançarski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7665)

Abstract

Most existing approaches in Mobile Context-Aware Recommender Systems focus on recommending relevant items to users taking into account contextual information, such as time, location, or social aspects. However, none of them has considered the problem of user’s content evolution. We introduce in this paper an algorithm that tackles this dynamicity. It is based on dynamic exploration/exploitation and can adaptively balance the two aspects by deciding which user’s situation is most relevant for exploration or exploitation. Within a deliberately designed offline simulation framework we conduct evaluations with real online event log data. The experimental results demonstrate that our algorithm outperforms surveyed algorithms.

Keywords

Recommender system Machine learning Exploration/exploitation dilemma Artificial intelligence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bouneffouf, D., Bouzeghoub, A., Gançarski, A.L.: Following the User’s Interests in Mobile Context-Aware Recommender Systems. In: AINA Workshops, Fukuoka, Japan, pp. 657–662 (2012)Google Scholar
  2. 2.
    Adomavicius, G., Mobasher, B., Ricci, F., Alexander, T.: Context-Aware Recommender Systems. AI Magazine 32(3), 67–80 (2011)Google Scholar
  3. 3.
    Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite Time Analysis of the Multiarmed Bandit Problem. Machine Learning 2, 235–256 (2002)CrossRefGoogle Scholar
  4. 4.
    Baltrunas, L., Ludwig, B., Peer, S., Ricci, F.: Context Relevance Assessment and Exploitation in Mobile Recommender Systems. Personal and Ubiquitous Computing, 1–20 (2011)Google Scholar
  5. 5.
    Bellotti, V., Begole, B., Chi, E.H., Ducheneaut, N., Fang, J., Isaacs, E.: Activity-Based Serendipitous Recommendations with the Magitti Mobile Leisure Guide. In: Proceedings on the Move, pp. 1157–1166. ACM, New York (2008)Google Scholar
  6. 6.
    Even-Dar, E., Mannor, S., Mansour, Y.: PAC Bounds for Multi-armed Bandit and Markov Decision Processes. In: Kivinen, J., Sloan, R.H. (eds.) COLT 2002. LNCS (LNAI), vol. 2375, p. 255. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Kivinen, J., Warmuth, M.K.: Exponentiated Gradient versus Gradient Descent for Linear Predictors. Information and Computation 132 (1995)Google Scholar
  8. 8.
    Langford, J., Zhang, T.: The Epoch-greedy Algorithm for Contextual Multi-armed Bandits. In: Advances in Neural Information Processing Systems (2008)Google Scholar
  9. 9.
    Li, L., Wei, C., Langford, J.: A Contextual-Bandit Approach to Personalized News Document Recommendation. In: Proceedings of the 19th International Conference on World Wide Web, pp. 661–670. ACM, New York (2010)CrossRefGoogle Scholar
  10. 10.
    Mannor, S., Tsitsiklis, J.N.: The Sample Complexity of Exploration in the Multi-Armed Bandit Problem. In: Computational Learning Theory, pp. 255–270 (2003)Google Scholar
  11. 11.
    Robbins, H.: Some Aspects of the Sequential Design of experiments. Bulletin of the American Mathematical Society 58, 527–535 (1952)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Watkins, C.: Learning from Delayed Rewards. Ph.D. thesis. Cambridge University (1989)Google Scholar
  13. 13.
    Li, W., Wang, X., Zhang, R., Cui, Y., Mao, J., Jin, R.: Exploitation and Exploration in a Performance Based Contextual Advertising System. In: Proceedings of the International Conference on Knowledge discovery and data mining, pp. 27–36. ACM, New York (2010)Google Scholar
  14. 14.
    Sohn, T., Li, K.A., Griswold, W.G., Hollan, J.D.: A Diary Study of Mobile Information Needs. In: Proceedings of the 26th Annual SIGCHI Conference on Human Factors in Computing, pp. 433–442. ACM, Florence (2008)Google Scholar
  15. 15.
    Wu, Z., Palmer, M.: Verb Semantics and Lexical Selection. In: Proceedings of the 32nd Meeting of the Association for Computational Linguistics, pp. 133–138 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Djallel Bouneffouf
    • 1
  • Amel Bouzeghoub
    • 1
  • Alda Lopes Gançarski
    • 1
  1. 1.Department of Computer ScienceTélécom SudParis, UMR CNRS SamovarEvry CedexFrance

Personalised recommendations