An Iterative Method for a Class of Generalized Global Dynamical System Involving Fuzzy Mappings in Hilbert Spaces

  • Yun-zhi Zou
  • Xin-kun Wu
  • Wen-bin Zhang
  • Chang-yin Sun
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7666)


This paper presents a class of generalized global dynamical system involving (H,η) set-valued monotone mappings and a set-valued function induced by a closed fuzzy mapping in Hilbert spaces. By using the resolvent operator technique and Nadler fixed-point theorem, we prove the equilibrium point set is not empty and closed. Furthermore, we develop a new iterative scheme which generates a Cauchy sequence strongly converging to an equilibrium point.


Generalized dynamical system Variational inequality equilibrium Fuzzy mapping Iterative method Resolvent operator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dupuis, P., Nagurney, A.: Dynamical Systems and Variational Inequalities. Ann. Oper. Res. 44, 19–42 (1993)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Friesz, T.L., Bernstein, D.H., Mehta, N.J., Tobin, R.L., Ganjlizadeh, S.: Day-to-Day Dynamic Network Disequilibria and Idealized Traveler Information Systems. Oper. Res. 42, 1120–1136 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Xia, Y.S., Vincent, T.L.: On the Stability of Global Projected Dynamical Systems. J. Optim. Theory Appl. 106, 129–150 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Zhang, D., Nagurney, A.: On the Stability of Projected Dynamical Systems. J. Optim. Theory Appl. 85, 97–124 (1995)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Zou, Y.Z., Huang, N.J., Lee, B.S.: A New Class of Generalized Global Set-Valued Dynamical Systems Involving \(\left( H,\eta \right) \) -monotone operators in Hilbert Spaces. Nonlinear Analysis Forum 12(2), 191–193 (2007)MathSciNetGoogle Scholar
  6. 6.
    Zadeh, L.A.: Fuzzy Sets. Inform. Control 8, 338–353 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Zou, Y., Huang, N.: An Iterative Method for Quasi-Variational-Like Inclusions with Fuzzy Mappings. In: Wang, G.-Y., Peters, J.F., Skowron, A., Yao, Y. (eds.) RSKT 2006. LNCS (LNAI), vol. 4062, pp. 349–356. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Fang, Y.P., Huang, N.J., Tompson, H.B.: A New System of Variational Inclusions with (H,η)-Monotone Operators in Hilbert Spaces. Comput. Math. Appl. 49(2-3), 365–374 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Nadler, S.B.: Multivalued Contraction Mappings. Pacific J. Math. 30, 475–485 (1969)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yun-zhi Zou
    • 1
  • Xin-kun Wu
    • 2
  • Wen-bin Zhang
    • 3
  • Chang-yin Sun
    • 1
  1. 1.School of AutomationSoutheast UniversityNanjingP.R. China
  2. 2.College of MathematicsSichuan UniversityChengduP.R. China
  3. 3.College of Statistics and MathematicsYunnan University of Finance and EconomicsKunmingP.R. China

Personalised recommendations