Decoding Network Activity from LFPs: A Computational Approach

  • Mufti Mahmud
  • Davide Travalin
  • Amir Hussain
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7663)


Cognition is one of the main capabilities of mammal brain and understanding it thoroughly requires decoding brain’s information processing pathways which are composed of networks formed by complex connectivity between neurons. Mostly, scientists rely on local field potentials (LFPs) averaged over a number of trials to study the effect of stimuli on brain regions under investigation. However, this may not be the right approach when trying to understand the exact neuronal network underlying the neuronal signals. As the LFPs are lumped activity of populations of neurons, their shapes provide fingerprints of the underlying networks. The method presented in this paper extracts shape information of the LFPs, calculate the corresponding current source density (CSD) from the LFPs and decode the underlying network activity. Through simulated LFPs it has been found that differences in LFP shapes lead to different network activity.


Local field potentials current source density brain activity neuronal signal neuronal signal analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maschietto, M., Mahmud, M., Girardi, S., Vassanelli, S.: A High Resolution Bi–Directional Communication through a Brain–Chip Interface. In: ECSIS Symposium on Advanced Technologies for Enhanced Quality of Life (AT-EQUAL 2009)., pp. 32–35 (2009)Google Scholar
  2. 2.
    Legatt, A., Arezzo, J., Vaughan, H.G.: Averaged multiple unit activity as an estimate of phasic changes in local neuronal activity: effects of volume–conducted potentials. J. Neurosci. Meth. 2, 203–217 (1980)CrossRefGoogle Scholar
  3. 3.
    van Hemmen, J., Ritz, R.: Neural Coding: A Theoretical Vista of Mechanisms, Techniques, and Applications. In: Andersson, S.I. (ed.) Analysis of Dynamical and Cognitive Systems. LNCS, vol. 888, pp. 75–119. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  4. 4.
    Mahmud, M., Bertoldo, A., Girardi, S., Maschietto, M., Vassanelli, S.: Automatic detection of layer activation order in information processing pathways of rat barrel cortex under mechanical whisker stimulation. In: 32nd Intl. Conf. of IEEE EMBS, pp. 6095–6098 (2010)Google Scholar
  5. 5.
    Mahmud, M., et al.: An Automated Method for the Detection of Layer Activation Order in Information Processing Pathways of Rat Barrel Cortex under Mechanical Whisker Stimulation. J. Neurosci. Meth. 196, 141–150 (2011)CrossRefGoogle Scholar
  6. 6.
    Okun, M., Naim, A., Lampl, I.: The subthreshold relation between cortical local field potential and neuronal firing unveiled by intracellular recordings in awake rats. J. Neurosci. 30, 4440–4448 (2010)CrossRefGoogle Scholar
  7. 7.
    Bedard, C., Kroger, H., Destexhe, A.: Modeling Extracellular Field Potentials and the Frequency-Filtering Properties of Extracellular Space. Biophysical Journal 86(3), 1829–1842 (2004)CrossRefGoogle Scholar
  8. 8.
    Ahrens, K.F., Kleinfeld, D.: Current flow in vibrissa motor cortex can phase–lock with exploratory rhythmic whisking in rat. J. Neurophysiol. 92, 1700–1707 (2004)CrossRefGoogle Scholar
  9. 9.
    Kublik, E.: Contextual impact on sensory processing at the barrel cortex of awake rat. Acta. Neurobiol. 64, 229–238 (2004)Google Scholar
  10. 10.
    Mahmud, M., et al.: A Contour Based Automatic Method to Classify Local Field Potentials Recorded from Rat Barrel Cortex. In: 5th Cairo Intl. Biomed. Eng. Conf., pp. 163–166 (2010)Google Scholar
  11. 11.
    Mahmud, M., et al.: An Automated Method for Clustering Single Sweep Local Field Potentials Recorded from Rat Barrel Cortex. In: 2011 ISSNIP Biosignals and Biorobotics Conf., pp. 1–5 (2011)Google Scholar
  12. 12.
    Mahmud, M., Travalin, D., Hussain, A., Girardi, S., Maschietto, M., Felderer, F., Vassanelli, S.: Single LFP Sorting for High-Resolution Brain-Chip Interfacing. In: Zhang, H., Hussain, A., Liu, D., Wang, Z. (eds.) BICS 2012. LNCS, vol. 7366, pp. 329–337. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Nunez, P.L.: Electric Fields of the Brain: The Neurophysics of EEG. Oxford University Press, Oxford (1981)Google Scholar
  14. 14.
    Koch, C., Segev, I.: Methods in Neuronal Modeling, 2nd edn. MIT Press, Cambridge (1998)Google Scholar
  15. 15.
    Macqueen, J.: Some methods for classification and analysis of multivariate observations. In: Fifth Berkeley Symp. Math. Statist. and Prob., vol. 1, pp. 281–297 (1967)Google Scholar
  16. 16.
    Bock, H.H.: Clustering methods: a history of K–Means algorithms. In: Brito, P., Cucumel, G., Bertrand, P., Carvalho, F. (eds.) Selected Contributions in Data Analysis and Classification, pp. 161–172 (2007)Google Scholar
  17. 17.
    Chiang, M.M.T., Mirkin, B.: Intelligent choice of the number of clusters in K-Means clustering: an experimental study with different cluster spreads. J. Classif. 27, 3–40 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Pettersen, K.H., Devor, A., Ulbert, I., Dale, A.M., Einevoll, G.T.: Currentsource density estimation based on inversion of electrostatic forward solution: Effects of finite extent of neuronal activity and conductivity discontinuities. J. Neurosci. Methods 154, 11633 (2006)CrossRefGoogle Scholar
  19. 19.
    Mahmud, M., Bertoldo, A., Girardi, S., Maschietto, M., Vassanelli, S.: SigMate: a Matlab–based neuronal signal processing tool. In: 32nd Intl. Conf. of IEEE EMBS, pp. 1352–1355 (2010)Google Scholar
  20. 20.
    Mahmud, M., et al.: SigMate: A Comprehensive Software Package for Extracellular Neuronal Signal Processing and Analysis. In: 5th Intl. Conf. on Neural Eng., pp. 88–91 (2011)Google Scholar
  21. 21.
    Mahmud, M., Bertoldo, A., Girardi, S., Maschietto, M., Vassanelli, S.: SigMate: A MATLAB–based automated tool for extracellular neuronal signal processing and analysis. J. Nerusci. Methods 207, 97–112 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mufti Mahmud
    • 1
    • 2
  • Davide Travalin
    • 3
  • Amir Hussain
    • 4
  1. 1.NeuroChip LaboratoryUniversity of PadovaPadovaItaly
  2. 2.Institute of Information TechnologyJahangirnagar UniversityDhakaBangladesh
  3. 3.Centro Direzionale ColleoniSt. Jude Medical Italia S.p.AAgrate BrianzaItaly
  4. 4.Centre for Cognitive & Computational NeuroscienceUniversity of StirlingStirlingUK

Personalised recommendations