Emotion Recognition Using KNN Classification for User Modeling and Sharing of Affect States

  • Imen Tayari Meftah
  • Nhan Le Thanh
  • Chokri Ben Amar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7663)

Abstract

In this study, we propose a new method of recognizing emotional states from physiological signals. Our proposal uses signal processing techniques to analyze physiological signals. It permits to recognize not only the basic emotions (e.g., anger, sadness, fear) but also any kind of complex emotion, including simultaneous superposed or masked emotions. This method consists of two main steps: the training step and the detection step. In the First step, our algorithm extracts the features of emotion from the data to generate an emotion training data base. Then in the second step, we apply the k-nearest-neighbor classifier to assign the predefined classes to instances in the test set. The final result is defined as an eight components vector representing emotion in multidimensional space. Experiments show the efficiency of the proposed method in detecting basic emotion by giving hight recognition rate.

Keywords

emotion recognition physiological signals KNN 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schröder, M., Baggia, P., Burkhardt, F., Pelachaud, C., Peter, C., Zovato, E.: EmotionML – An Upcoming Standard for Representing Emotions and Related States. In: D’Mello, S., Graesser, A., Schuller, B., Martin, J.-C. (eds.) ACII 2011, Part I. LNCS, vol. 6974, pp. 316–325. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    The HUMAINE Association: Humaine emotion annotation and representation language (earl): Proposal (Juin 2006), http://emotion-research.net/projects/humaine/earl/proposal
  3. 3.
    Tayari, I., Le Thanh, N.: Sharing Emotional Information Using A Three Layer Model. In: The Sixth International Conference on Internet and Web Applications and Services, Netherlands Antilles, IARIA, Xpert Publishing Services (2011)Google Scholar
  4. 4.
    Darwin, C.: The expression of the Emotions in Man and Animals, 3 sub edn. Oxford University Press Inc. (1872)Google Scholar
  5. 5.
    Ekman, P.: Basic emotions. John Wiley Sons, Ltd., Sussex (1999)Google Scholar
  6. 6.
    Izard, C.E.: Human emotions. Plenum Press, New York (1977)Google Scholar
  7. 7.
    Plutchik, R.: Emotion, a psychoevolutionary synthesis, New York (1980)Google Scholar
  8. 8.
    Russell, J.: A circumplex model of affect. Journal of Personality and Social Psychology (39), 1161–1178 (1980)Google Scholar
  9. 9.
    Ball, G., Breese, J.: Modeling the emotional state of computer users (1999)Google Scholar
  10. 10.
    López, J.M., Cearreta, I., Garay-Vitoria, N., López de Ipiña, K., Beristain, A.: A methodological approach for building multimodal acted affective databases. In: Engineering the User Interface, pp. 1–17. Springer, London (2009)CrossRefGoogle Scholar
  11. 11.
    Tayari Meftah, I., Thanh, N.L., Ben Amar, C.: Towards an algebraic modeling of emotional states. In: Fifth International Conference on Internet and Web Applications and Services ICIW 2010, pp. 513–518 (2010)Google Scholar
  12. 12.
    Le, X.H., Qunot, G., Castelli, E.: Recognizing emotions for the audio-visual document indexing. In: Proceedings of the Ninth IEEE International Symposium on Computers and Communications, pp. 580–584 (2004)Google Scholar
  13. 13.
    Meghjani, M., Ferrie, F., Dudek, G.: Bimodal information analysis for emotion recognition. In: Proceedings of the IEEE, Workshop on Applications of Computer Vision (WACV), Utah, USA (2009)Google Scholar
  14. 14.
    Littlewort, G., Bartlett, M.S., Salamanca, L.P., Reilly, J.: Automated measuremen of children’s facial expressions during problem solving tasks, pp. 30–35. IEEE (2011)Google Scholar
  15. 15.
    James, W.: The Principles of Psychology. Henry Holt (1890)Google Scholar
  16. 16.
    Schachter, S.: The interaction of cognitive and physiological determinants of emotional state. Advances in Experimental Social Psychology 1, 49–80 (1964)CrossRefGoogle Scholar
  17. 17.
    Picard, R.W.: Affective computing. MIT Press (1997)Google Scholar
  18. 18.
    Anttonen, J., Surakka, V.: Emotions and heart rate while sitting on a chair. In: CHI 2005: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 491–499. ACM, New York (2005)CrossRefGoogle Scholar
  19. 19.
    Friesen, W.V., Ekman, P.: Unmasking the Face: A Guide to Recognizing Emotion from Facial Clues. Malor Books (2009)Google Scholar
  20. 20.
    Healey, J.: Wearable and Automotive Systems for the Recognition of Affect from Physiology. PhD thesis, Massachusetts Institute of Technology (2000)Google Scholar
  21. 21.
    Muthusamy, R.P.: Seminar paper: Emotion recognition from physiological signal using bio-sensors, 334–339Google Scholar
  22. 22.
    Zong, C., Chetouani, M.: Hilbert-huang transform based physiological signals anal ysis for emotion recognition. In: 2009 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pp. 334–339 (2009)Google Scholar
  23. 23.
    Kim, K.H., Bang, S.W., Kim, S.R.: Development of person-independent emotion recognition system based on multiple physiological signals. In: Proceedings of the Second Joint Conference and the Annual Fall Meeting of the Biomedical Engineer ing Society EMBS/BMES Conference, vol. 1, pp. 50–51 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Imen Tayari Meftah
    • 1
    • 2
  • Nhan Le Thanh
    • 1
  • Chokri Ben Amar
    • 2
  1. 1.Wimmics, INRIA and University of NiceSophia-AntipolisFrance
  2. 2.REGIM LaboratoryUniversity of Sfax, TunisiaSfaxTunisia

Personalised recommendations