Local Patch Dissimilarity for Images

  • Liviu Petrisor Dinu
  • Radu-Tudor Ionescu
  • Marius Popescu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7663)


This paper aims to introduce a new distance measure for images, called Local Patch Dissimilarity. This new distance measure is inspired from rank distance which is a distance measure for strings.

The distance measure introduced in this paper is based on patches. There are many other patch-based techniques used in image processing. Patches contain contextual information and have advantages in terms of generalization.

An algorithm that computes the Local Patch Dissimilarity between two images is presented in this work. Experiments show that the extension of rank distance to images has very good results in image classification, more precisely in handwritten digit recognition.


Image distance Image dissimilarity Image classification Handwritten digit recognition Patches Patch-based technique 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, S., Roth, D.: Learning a Sparse Representation for Object Detection. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV. LNCS, vol. 2353, pp. 113–127. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Barnes, C., Goldman, D.B., Shechtman, E., Finkelstein, A.: The PatchMatch Randomized Matching Algorithm for Image Manipulation. Communications of the ACM 54(11), 103–110 (2011)CrossRefGoogle Scholar
  3. 3.
    Bottou, L., Vapnik, V.: Local Learning Algorithms. Neural Computation 4, 888–900 (1992)CrossRefGoogle Scholar
  4. 4.
    Cortes, C., Vapnik, V.: Support-Vector Networks. Machine Learning 20(3), 273–297 (1995)zbMATHGoogle Scholar
  5. 5.
    Deselaers, T., Keyser, D., Ney, H.: Discriminative Training for Object Recognition using Image Patches. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 157–162 (2005)Google Scholar
  6. 6.
    Deza, E., Deza, M.M.: Dictionary of Distances. Elsevier, The Netherlands (1998)Google Scholar
  7. 7.
    Dinu, A., Dinu, L.P.: On the Syllabic Similarities of Romance Languages. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, pp. 785–788. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Dinu, L.P.: On the classification and aggregation of hierarchies with different constitutive elements. Fundamenta Informaticae 55(1), 39–50 (2003)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Dinu, L.P., Ionescu, R.T.: An efficient rank based approach for closest string and closest substring. PLoS ONE 7(6), e37576 (2012)CrossRefGoogle Scholar
  10. 10.
    Dinu, L.P., Sgarro, A.: A Low-complexity Distance for DNA Strings. Fundamenta Informaticae 73(3), 361–372 (2006)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In: Proceedings of SIGGRAPH 2001, pp. 341–346 (2001)Google Scholar
  12. 12.
    Guo, G., Dyer, C.R.: Patch-based Image Correlation with Rapid Filtering. In: IEEE Conference on Computer Vision and Pattern Recognition (2007)Google Scholar
  13. 13.
    LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)CrossRefGoogle Scholar
  14. 14.
    LeCun, Y., Jackel, L.D., Boser, B., Denker, J.S., Graf, H.P., Guyon, I., Henderson, D., Howard, R.E., Hubbard, W.: Handwritten digit recognition: Applications of neural net chips and automatic learning. IEEE Communications, 41–46 (1989)Google Scholar
  15. 15.
    Paredes, R., Prez-Cortes, J., Juan, A., Vidal, E.: Local Representations and a Direct Voting Scheme for Face Recognition. In: Proceedings of Workshop on Pattern Recognition in Information Systems, pp. 71–79 (2001)Google Scholar
  16. 16.
    Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press (2004)Google Scholar
  17. 17.
    Simard, P.Y., LeCun, Y.A., Denker, J.S., Victorri, B.: Transformation Invariance in Pattern Recognition - Tangent Distance and Tangent Propagation. In: Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 1524, pp. 239–274. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  18. 18.
    Srihari, S.N.: High-performance reading machines. Proceedings of the IEEE (Special issue on Optical Character Recognition) 80(7), 1120–1132 (1992)Google Scholar
  19. 19.
    Suen, C.Y., Nadal, C., Legault, R., Mai, T.A., Lam, L.: Computer recognition of unconstrained handwritten numerals. Proceedings of the IEEE (Special issue on Optical Character Recognition) 80(7), 1162–1180 (1992)Google Scholar
  20. 20.
    Xie, J., Zhang, L., You, J., Zhang, D.: Texture classification via patch-based sparse texton learning. In: Proceedings of IEEE International Conference on Image Processing, pp. 2737–2740 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Liviu Petrisor Dinu
    • 1
  • Radu-Tudor Ionescu
    • 1
  • Marius Popescu
    • 1
  1. 1.Faculty of Mathematics and Computer ScienceUniversity of BucharestBucharestRomania

Personalised recommendations