Advertisement

Automatic Analysis of Leishmania Infected Microscopy Images via Gaussian Mixture Models

  • Pedro A. Nogueira
  • Luís Filipe Teófilo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7589)

Abstract

This work addresses the issue of automatic organic component detection and segmentation in confocal microscopy images. The proposed method performs cellular/parasitic identification through adaptive segmentation using a two-level Otsu’s Method. Segmented regions are divided using a rule-based classifier modeled on a decreasing harmonic function and a Support Vector Machine trained with features extracted from several Gaussian mixture models of the segmented regions. Results indicate the proposed method is able to count cells and parasites with accuracies above 90%, as well as perform individual cell/parasite detection in multiple nucleic regions with approximately 85% accuracy. Runtime measures indicate the proposed method is also adequate for real-time usage.

Keywords

Gaussian Mixture Model Support Vector Machine Classifier Error Margin Segmented Region Fluorescence Microscopy Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ryan, K.J., Ray, C.G.: Sherris Medical Microbiology, pp. 749–754. McGraw-Hill (2004)Google Scholar
  2. 2.
    Myler, P., Fasel, N.: Leishmania: After The Genome. Caister Academic Press (2008)Google Scholar
  3. 3.
    Jeronimo, S.M.B., DeQueiroz-Sousa, A., Pearson, R.D.: Leishmaniasis. In: Goldman, L., Deds, A. (eds.) Cecil Medicine, 23th edn. ch. 369, Saunders Elsevier, Philadelphia (2007)Google Scholar
  4. 4.
    Lichtman, J.W., Conchello, J.A.: Fluorescence Microscopy. Nature Publishing Group (2005)Google Scholar
  5. 5.
    Spring, K.R.: MicroscopyU: Introduction to Fluorescence Microscopy (2010)Google Scholar
  6. 6.
    Liao, Q., Deng, Y.: An Accurate Segmentation Method For White Blood Cell Images. In: Proceedings IEEE International Symposium on Biomedical Imaging, pp. 245–248 (2002)Google Scholar
  7. 7.
    Ficarra, E., Cataldo, S.D., Acquaviva, A., Macii, E.: Automated Segmentation of Cells With IHC Membrane Staining. IEEE Transactions on Biomedical Engineering 58(5) (2011)Google Scholar
  8. 8.
    Jiang, K., Liao, Q., Dai, S.: A Novel White Blood Cell Segmentation Scheme Using Scale-Space Filtering And Watershed Clustering. In: Proceedings of ICMLC (2003)Google Scholar
  9. 9.
    Park, J., Keller, J.M.: Fuzzy Patch Label Relaxation in Bone Marrow Cell Segmentation. In: International Conference on Computational Cybernetics and Simulation, pp. 1133–1138 (1997)Google Scholar
  10. 10.
    Begelman, G., Gur, E., Rivlin, E., Rudzsky, M., Zalevsky, Z.: Cell Nuclei Segmentation Using Fuzzy Logic Engine. In: Proceedings IEEE International Conference on Image Processing (2004)Google Scholar
  11. 11.
    Yu, W., Lee, H.K., Hariharan, S., Bu, W., Ahmed, S.: Level Set Segmentation of Cellular Images Based on Topological Dependence. In: ISAVC (2008)Google Scholar
  12. 12.
    Yan, P., Zhou, X., Shah, M., Wong, S.T.C.: Automatic Segmentation of High-Throughput RNAi Fluorescent Cellular Images. IEEE Transaction On Information Technology In Biomedicine 12(1) (2008)Google Scholar
  13. 13.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Sys., Man., Cyber. 9(1), 62–66 (1979)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Freeman, H.: On the encoding of arbitrary geometric configurations. IRE Transactions on Electronic Computers, 260–268 (1961)Google Scholar
  15. 15.
    Neal, R.A., Croft, S.L.: An in-vitro system for determining the activity of compounds against the intracellular amastigote form of Leishmania donovani. Journal of Antimicrobial Chemotherapy 14(5), 463–475 (1984)CrossRefGoogle Scholar
  16. 16.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11(1) (2009)Google Scholar
  17. 17.
    Reynolds, D.: Gaussian Mixture Models. MIT Lincoln Laboratory, MA 02140, USAGoogle Scholar
  18. 18.
    Gonzales, Woods: Digital Image Processing, 3rd edn. (DIP/3e) (2008)Google Scholar
  19. 19.
    Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2007) ISBN: 0387310738Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Pedro A. Nogueira
    • 1
  • Luís Filipe Teófilo
    • 1
  1. 1.Laboratória de Inteligência Artificial e Ciência de ComputadoresFaculdade de Engenharia da Universidade do Porto, FEUPPortoPortugal

Personalised recommendations