Advertisement

Local Search and the Traveling Salesman Problem: A Feature-Based Characterization of Problem Hardness

  • Olaf Mersmann
  • Bernd Bischl
  • Jakob Bossek
  • Heike Trautmann
  • Markus Wagner
  • Frank Neumann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7219)

Abstract

With this paper we contribute to the understanding of the success of 2-opt based local search algorithms for solving the traveling salesman problem (TSP). Although 2-opt is widely used in practice, it is hard to understand its success from a theoretical perspective. We take a statistical approach and examine the features of TSP instances that make the problem either hard or easy to solve. As a measure of problem difficulty for 2-opt we use the approximation ratio that it achieves on a given instance. Our investigations point out important features that make TSP instances hard or easy to be approximated by 2-opt.

Keywords

TSP 2-opt Classification Feature Selection MARS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Applegate, D., Cook, W.J., Dash, S., Rohe, A.: Solution of a min-max vehicle routing problem. Informs Journal on Computing 14(2), 132–143 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Arora, S.: Polynomial time approximation schemes for euclidean traveling salesman and other geometric problems. J. ACM 45(5), 753–782 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth, Belmont (1984)zbMATHGoogle Scholar
  4. 4.
    Chandra, B., Karloff, H.J., Tovey, C.A.: New results on the old k-Opt algorithm for the traveling salesman problem. SIAM J. Comput. 28(6), 1998–2029 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Croes, G.A.: A method for solving traveling-salesman problems. Operations Research 6(6), 791–812 (1958)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Englert, M., Röglin, H., Vöcking, B.: Worst case and probabilistic analysis of the 2-opt algorithm for the tsp: extended abstract. In: Bansal, N., Pruhs, K., Stein, C. (eds.) SODA, pp. 1295–1304. SIAM (2007)Google Scholar
  7. 7.
    Friedman, J.H.: Multivariate adaptive regression splines. Annals of Statistics 19(1), 1–67 (1991)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Glover, F.: Ejection chains, reference structures and alternating path methods for traveling salesman problems. Discrete Applied Mathematics 65(1-3), 223–253 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Johnson, D.S., McGeoch, L.A.: The traveling salesman problem: A case study in local optimization. In: Aarts, E.H.L., Lenstra, J.K. (eds.) Local Search in Combinatorial Optimization. Wiley (1997)Google Scholar
  10. 10.
    Kanda, J., Carvalho, A., Hruschka, E., Soares, C.: Selection of algorithms to solve traveling salesman problems using meta-learning. Hybrid Intelligent Systems 8, 117–128 (2011)Google Scholar
  11. 11.
    Kilby, P., Slaney, J., Walsh, T.: The backbone of the travelling salesperson. In: Proc, of the 19th International Joint Conference on Artificial intelligence, IJCAI 2005, pp. 175–180. Morgan Kaufmann Publishers Inc., San Francisco (2005)Google Scholar
  12. 12.
    Kötzing, T., Neumann, F., Röglin, H., Witt, C.: Theoretical Properties of Two ACO Approaches for the Traveling Salesman Problem. In: Dorigo, M., Birattari, M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P., Floreano, D., Gambardella, L.M., Groß, R., Şahin, E., Sayama, H., Stützle, T. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 324–335. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Lin, S., Kernighan, B.: An effective heuristic algorithm for the traveling salesman problem. Operations Research 21, 498–516 (1973)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Lin, S.: Computer solutions of the travelling salesman problem. Bell Systems Technical Journal 44(10), 2245–2269 (1965)zbMATHCrossRefGoogle Scholar
  15. 15.
    Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.: Exploratory landscape analysis. In: Proc. of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011, pp. 829–836. ACM, New York (2011)Google Scholar
  16. 16.
    Merz, P., Freisleben, B.: Memetic algorithms for the traveling salesman problem. Complex Systems 13(4), 297–345 (2001)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Padberg, M., Rinaldi, G.: A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems. SIAMR 33(1), 60–100 (1991)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Reinelt, G.: Tsplib - a traveling salesman problem library. ORSA Journal on Computing 3(4), 376–384 (1991)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Sander, J., Ester, M., Kriegel, H., Xu, X.: Density-based clustering in spatial databases: The algorithm gdbscan and its applications. Data Mining and Knowledge Discovery 2(2), 169–194 (1998)CrossRefGoogle Scholar
  20. 20.
    Smith-Miles, K., van Hemert, J.: Discovering the suitability of optimisation algorithms by learning from evolved instances. Annals of Mathematics and Artificial Intelligence (2011) (forthcoming)Google Scholar
  21. 21.
    Smith-Miles, K., van Hemert, J., Lim, X.Y.: Understanding TSP Difficulty by Learning from Evolved Instances. In: Blum, C., Battiti, R. (eds.) LION 4. LNCS, vol. 6073, pp. 266–280. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Stadler, P.F., Schnabl, W.: The Landscape of the Traveling Salesman Problem. Physics Letters A 161, 337–344 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Vazirani, V.V.: Approximation algorithms. Springer (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Olaf Mersmann
    • 1
  • Bernd Bischl
    • 1
  • Jakob Bossek
    • 1
  • Heike Trautmann
    • 1
  • Markus Wagner
    • 2
  • Frank Neumann
    • 2
  1. 1.Statistics FacultyTU Dortmund UniversityGermany
  2. 2.School of Computer ScienceThe University of AdelaideAustralia

Personalised recommendations