Global Optimization for Algebraic Geometry – Computing Runge–Kutta Methods

  • Ivan Martino
  • Giuseppe Nicosia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7219)


This research work presents a new evolutionary optimization algorithm, Evo-Runge-Kutta in theoretical mathematics with applications in scientific computing. We illustrate the application of Evo-Runge-Kutta, a two-phase optimization algorithm, to a problem of pure algebra, the study of the parameterization of an algebraic variety, an open problem in algebra. Results show the design and optimization of particular algebraic varieties, the Runge-Kutta methods of order q. The mapping between algebraic geometry and evolutionary optimization is direct, and we expect that many open problems in pure algebra will be modelled as constrained global optimization problems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kaw, A., Kalu, E.E.: Numerical Methods with Applications. Autarkaw (2010)Google Scholar
  2. 2.
    Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equation I: Nonstiff Problems, 3rd edn. Springer (January 2010)Google Scholar
  3. 3.
    Goldberg, D.: Design of Innovation. Kluwar (2002)Google Scholar
  4. 4.
    Butcher, J.C.: Numerical methods for ordinary differential equations. John Wiley and Sons (2008)Google Scholar
  5. 5.
    Famelis, T., Papakostas, S.N., Tsitouras, C.: Symbolic derivation of runge kutta order conditions. J. Symbolic Comput. 37, 311–327 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Fulton, W.: Algebraic Curves. Addison Wesley Publishing Company (December 1974)Google Scholar
  7. 7.
    Kollar, J.: Rational Curves on Algebraic Varieties. Springer (1996)Google Scholar
  8. 8.
    Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3rd edn. Springer (2007)Google Scholar
  9. 9.
    D’Andrea, C., Sombra, M.: The newton polygon of a rational plane curve. arXiv:0710.1103Google Scholar
  10. 10.
    Castro, D., Giusti, M., Heintz, J., Matera, G., Pardo, L.M.: The hardness of polynomial equation solving. Found. Comput. Math. 3(4), 347–420 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Giusti, M., Hägele, K., Lecerf, G., Marchand, J., Salvy, B.: The projective Noether Maple package: computing the dimension of a projective variety. J. Symbolic Comput. 30(3), 291–307 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Giusti, M., Lecerf, G., Salvy, B.: A Gröbner free alternative for polynomial system solving. J. Complexity 17(1), 154–211 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Greene, R.E., Yau, S.T. (eds.): Open Problems in Geometry. Proceedings of Symposia in Pure Mathematics, vol. 54 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ivan Martino
    • 1
  • Giuseppe Nicosia
    • 2
  1. 1.Department of MathematicsStockholm UniversitySweden
  2. 2.Department of Mathematics and Computer ScienceUniversity of CataniaItaly

Personalised recommendations