Advertisement

A Learning Optimization Algorithm in Graph Theory

Versatile Search for Extremal Graphs Using a Learning Algorithm
  • Gilles Caporossi
  • Pierre Hansen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7219)

Abstract

Using a heuristic optimization module based upon Variable Neighborhood Search (VNS), the system AutoGraphiX’s main feature is to find extremal or near extremal graphs, i.e., graphs that minimize or maximize an invariant. From the so obtained graphs, conjectures are found either automatically or interactively. Most of the features of the system relies on the optimization that must be efficient but the variety of problems handled by the system makes the tuning of the optimizer difficult to achieve. We propose a learning algorithm that is trained during the optimization of the problem and provides better results than all the algorithms previously used for that purpose.

Keywords

extremal graphs learning algorithm combinatorial optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aouchiche, M., Bonnefoy, J.-M., Fidahoussen, A., Caporossi, G., Hansen, P., Lacheré, J., Monhait, A.: Variable neighborhood search for extremal graphs. 14. the autographix 2 system. In: Liberti, L., Maculan, N. (eds.) Global Optimization. From Theory to Implementation. Springer Science, NewYork (2006)Google Scholar
  2. 2.
    Aouchiche, M., Caporossi, G., Hansen, P.: Variable neighborhood search for extremal graphs 8. variations on graffiti 105. Congressus Numerantium 148, 129–144 (2001)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Belhaiza, S., Abreu, N.M.M., Hansen, P., Oliveira, C.S.: Variable neighborhood search for extremal graphs. 11. bounds on algebraic connectivity. In: Hertz, A., Avis, D., Marcotte, O. (eds.) Graph Theory and Combinatorial Optimization. Springer, New York (2005)Google Scholar
  4. 4.
    Caporossi, G., Cvetković, D., Gutman, I., Hansen, P.: Variable neighborhood search for extremal graphs. 2. finding graphs with extremal energy. Journal of Chemical Information and Computer Sciences 39, 984–996 (1999)Google Scholar
  5. 5.
    Caporossi, G., Dobrynin, A.A., Gutman, I., Hansen, P.: Trees with palindromic Hosoya polynomials. Graph Theory Notes of New York 37, 10–16 (1999)MathSciNetGoogle Scholar
  6. 6.
    Caporossi, G., Gutman, I., Hansen, P.: Variable neighborhood search for extremal graphs: 4. chemical trees with extremal connectivity index. Computers and Chemistry 23, 469–477 (1999)CrossRefGoogle Scholar
  7. 7.
    Caporossi, G., Gutman, I., Hansen, P., Pavlović, L.: Graphs with maximum connectivity index. Computational Biology and Chemistry 27, 85–90 (2003)CrossRefGoogle Scholar
  8. 8.
    Caporossi, G., Hansen, P.: Finding Relations in Polynomial Time. In: Proceedings of the XVI International Joint Conference on Artificial Intelligence, pp. 780–785 (1999)Google Scholar
  9. 9.
    Caporossi, G., Hansen, P.: Variable neighborhood search for extremal graphs. 1. the autographix system. Discrete Math. 212, 29–44 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Caporossi, G., Hansen, P.: Variable neighborhood search for extremal graphs. v. three ways to automate finding conjectures. Discrete Math. 276, 81–94 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Cvetković, D., Simić, S., Caporossi, G., Hansen, P.: Variable neighborhood search for extremal graphs. iii. on the largest eigenvalue of color-constrained trees. Linear and Multilinear Algebra 49, 143–160 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Fowler, P.W., Hansen, P., Caporossi, G., Soncini, A.: Variable neighborhood search for extremal graph. 7. polyenes with maximum homo-lumo gap. Chemical Physics Letters 342, 105–112 (2001)CrossRefGoogle Scholar
  13. 13.
    Gutman, I., Miljković, O., Caporossi, G., Hansen, P.: Alkanes with small and large randić connectivity indices. Chemical Physics Letters 306, 366–372 (1999)CrossRefGoogle Scholar
  14. 14.
    Hansen, P., Mélot, H.: Variable neighborhood search for extremal graphs. 6. analyzing bounds for the connectivity index. Journal of Chemical Information and Computer Sciences 43, 1–14 (2003)Google Scholar
  15. 15.
    Hansen, P., Mélot, H.: Variable neighborhood search for extremal graphs. 9. bounding the irregularity of a graph. In: Fajtlowicz, S., Fowler, P., Hansen, P., Janowitz, M., Roberts, F. (eds.) Graphs and Discovery. American Mathematical Society, Providence (2005)Google Scholar
  16. 16.
    Hansen, P., Mladenović, N.: Variable neighborhood search: Principles and applications. European J. Oper. Res. 130, 449–467 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24, 1097–1100 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Randić, M.: On characterization of molecular branching. Journal of the American Chemical Society 97, 6609–6615 (1975)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gilles Caporossi
    • 1
  • Pierre Hansen
    • 1
  1. 1.GERAD and HEC MontréalCanada

Personalised recommendations