Automatically Configuring Algorithms for Scaling Performance

  • James Styles
  • Holger H. Hoos
  • Martin Müller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7219)


Automated algorithm configurators have been shown to be very effective for finding good configurations of high performance algorithms for a broad range of computationally hard problems. As we show in this work, the standard protocol for using these configurators is not always effective. We propose a simple and computationally inexpensive modification to this protocol and apply it to state-of-the-art solvers for two prominent problems, TSP and computer Go playing, where the standard protocol is unable or unlikely to yield performance improvements, and one problem, mixed integer programming, where the standard protocol is known to be effective. We show that our new protocol is able to find configurations between 4% and 180% better than the standard protocol within the same time budget.


Mixed Integer Programming Good Intermediate Board Size Scaling Performance Hard Instance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fuego, (version visited last in October 2011)
  2. 2.
    IBM ILOG CPLEX optimizer, (version visited last in October 2011)
  3. 3.
    Ahmadizadeh, K., Dilkina, B., Gomes, C.P., Sabharwal, A.: An Empirical Study of Optimization for Maximizing Diffusion in Networks. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 514–521. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Ansótegui, C., Sellmann, M., Tierney, K.: A Gender-Based Genetic Algorithm for the Automatic Configuration of Algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 142–157. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Applegate, D., Bixby, R.E., Chvátal, V., Cook, W.J.: Concorde TSP solver, (version visited last in October 2011)
  6. 6.
    Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: GECCO 2002, pp. 11–18 (2002)Google Scholar
  7. 7.
    Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-Race and Iterated F-Race: An Overview. In: Experimental Methods for the Analysis of Optimization Algorithms, pp. 311–336. Springer (2010)Google Scholar
  8. 8.
    Chiarandini, M., Fawcett, C., Hoos, H.H.: A modular multiphase heuristic solver for post enrolment course timetabling. In: Proceedings of the 7th International Conference on the Practice and Theory of Automated Timetabling, Montréal, pp. 1–6 (2008)Google Scholar
  9. 9.
    Enzenberger, M., Müller, M., Arneson, B., Segal, R.: Fuego - an open-source framework for board games and Go engine based on Monte Carlo tree search. IEEE Transactions on Computational Intelligence and AI in Games 2, 259–270 (2010), Special issue on Monte Carlo Techniques and Computer GoCrossRefGoogle Scholar
  10. 10.
    Gomes, C.P., van Hoeve, W.-J., Sabharwal, A.: Connections in Networks: A Hybrid Approach. In: Trick, M.A. (ed.) CPAIOR 2008. LNCS, vol. 5015, pp. 303–307. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman heuristic. European Journal of Operational Research 126, 106–130 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Hutter, F., Hoos, H.H., Leyton-Brown, K.: Automated Configuration of Mixed Integer Programming Solvers. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 186–202. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential Model-Based Optimization for General Algorithm Configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: An Automatic Algorithm Configuration Framework. Journal of Artificial Intelligence Research 36, 267–306 (2009)zbMATHGoogle Scholar
  15. 15.
    Reinelt, G.: TSPLIB, (version visited last in October 2011)
  16. 16.
    Tompkins, D.A.D., Hoos, H.H.: Dynamic Scoring Functions with Variable Expressions: New SLS Methods for Solving SAT. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 278–292. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Hydra-MIP: Automated algorithm configuration and selection for mixed integer programming. In: RCRA Workshop on Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion at the International Joint Conference on Artificial Intelligence, IJCAI (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • James Styles
    • 1
  • Holger H. Hoos
    • 1
  • Martin Müller
    • 2
  1. 1.University of British ColumbiaVancouverCanada
  2. 2.Computing ScienceUniversity of AlbertaEdmontonCanada

Personalised recommendations