Evaluating Tree-Decomposition Based Algorithms for Answer Set Programming

  • Michael Morak
  • Nysret Musliu
  • Reinhard Pichler
  • Stefan Rümmele
  • Stefan Woltran
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7219)


A promising approach to tackle intractable problems is given by a combination of decomposition methods with dynamic algorithms. One such decomposition concept is tree decomposition. However, several heuristics for obtaining a tree decomposition exist and, moreover, also the subsequent dynamic algorithm can be laid out differently. In this paper, we provide an experimental evaluation of this combined approach when applied to reasoning problems in propositional answer set programming. More specifically, we analyze the performance of three different heuristics and two different dynamic algorithms, an existing standard version and a recently proposed algorithm based on a more involved data structure, but which provides better theoretical runtime. The results suggest that a suitable combination of the tree decomposition heuristics and the dynamic algorithm has to be chosen carefully. In particular, we observed that the performance of the dynamic algorithm highly depends on certain features (besides treewidth) of the provided tree decomposition. Based on this observation we apply supervised machine learning techniques to automatically select the dynamic algorithm depending on the features of the input tree decomposition.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aha, D.W., Kibler, D.F., Albert, M.K.: Instance-based learning algorithms. Machine Learning 6, 37–66 (1991)Google Scholar
  2. 2.
    Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. Alg. Disc. Meth. 8, 277–284 (1987)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Bachoore, E.H., Bodlaender, H.L.: A Branch and Bound Algorithm for Exact, Upper, and Lower Bounds on Treewidth. In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 255–266. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Balduccini, M.: Learning and using domain-specific heuristics in ASP solvers. AI Commun. 24(2), 147–164 (2011)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Ben-Eliyahu, R., Dechter, R.: Propositional semantics for disjunctive logic programs. Ann. Math. Artif. Intell. 12, 53–87 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybern. 11(1-2), 1–22 (1993)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Bodlaender, H.L., Koster, A.M.C.A.: Treewidth computations I. Upper Bounds. Inf. Comput. 208(3), 259–275 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Dermaku, A., Ganzow, T., Gottlob, G., McMahan, B., Musliu, N., Samer, M.: Heuristic Methods for Hypertree Decomposition. In: Gelbukh, A., Morales, E.F. (eds.) MICAI 2008. LNCS (LNAI), vol. 5317, pp. 1–11. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., Schneider, M.T., Ziller, S.: A Portfolio Solver for Answer Set Programming: Preliminary Report. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 352–357. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Comput. 9(3/4), 365–386 (1991)CrossRefGoogle Scholar
  11. 11.
    Gogate, V., Dechter, R.: A complete anytime algorithm for treewidth. In: Proc. UAI 2004, pp. 201–208. AUAI Press (2004)Google Scholar
  12. 12.
    Gottlob, G., Pichler, R., Wei, F.: Bounded treewidth as a key to tractability of knowledge representation and reasoning. In: Proc. AAAI 2006, pp. 250–256. AAAI Press (2006)Google Scholar
  13. 13.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explorations 11(1), 10–18 (2009)CrossRefGoogle Scholar
  14. 14.
    Hall, M.A., Smith, L.A.: Practical feature subset selection for machine learning. In: Proc. ACSC 1998, pp. 181–191. Springer (1998)Google Scholar
  15. 15.
    Jakl, M., Pichler, R., Woltran, S.: Answer-set programming with bounded treewidth. In: Proc. IJCAI 2009, pp. 816–822. AAAI Press (2009)Google Scholar
  16. 16.
    Kloks, T.: Treewidth, computations and approximations. LNCS, vol. 842. Springer, Heidelberg (1994)zbMATHGoogle Scholar
  17. 17.
    Koster, A., van Hoesel, S., Kolen, A.: Solving partial constraint satisfaction problems with tree-decomposition. Networks 40(3), 170–180 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Lauritzen, S., Spiegelhalter, D.: Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society, Series B 50, 157–224 (1988)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Log. 7(3), 499–562 (2006)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Marek, V.W., Truszczyński, M.: Stable Models and an Alternative Logic Programming Paradigm. In: The Logic Programming Paradigm – A 25-Year Perspective, pp. 375–398. Springer (1999)Google Scholar
  21. 21.
    Morak, M., Musliu, N., Pichler, R., Rümmele, S., Woltran, S.: A new tree-decomposition based algorithm for answer set programming. In: Proc. ICTAI, pp. 916–918 (2011)Google Scholar
  22. 22.
    Morak, M., Pichler, R., Rümmele, S., Woltran, S.: A Dynamic-Programming Based ASP-Solver. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 369–372. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Niemelä, I.: Logic programming with stable model semantics as a constraint programming paradigm. Ann. Math. Artif. Intell. 25(3-4), 241–273 (1999)zbMATHCrossRefGoogle Scholar
  24. 24.
    Quinlan, R.J.: Learning with continuous classes. In: 5th Australian Joint Conference on Artificial Intelligence, Singapore, pp. 343–348 (1992)Google Scholar
  25. 25.
    Robertson, N., Seymour, P.D.: Graph minors II: Algorithmic aspects of tree-width. Journal Algorithms 7, 309–322 (1986)zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Samer, M., Szeider, S.: Algorithms for propositional model counting. J. Discrete Algorithms 8(1), 50–64 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Shoikhet, K., Geiger, D.: A practical algorithm for finding optimal triangulations. In: Proc. AAAI 1997, pp. 185–190. AAAI Press/The MIT Press (1997)Google Scholar
  28. 28.
    Smith-Miles, K.: Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Comput. Surv. 41(1) (2008)Google Scholar
  29. 29.
    Tarjan, R., Yannakakis, M.: Simple linear-time algorithm to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13, 566–579 (1984)zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Wang, Y., Witten, I.H.: Induction of model trees for predicting continuous classes. In: Poster Papers of the 9th European Conference on Machine Learning (1997)Google Scholar
  31. 31.
    Zhao, Y., Lin, F.: Answer Set Programming Phase Transition: A Study on Randomly Generated Programs. In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 239–253. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Michael Morak
    • 1
  • Nysret Musliu
    • 1
  • Reinhard Pichler
    • 1
  • Stefan Rümmele
    • 1
  • Stefan Woltran
    • 1
  1. 1.Institute of Information SystemsVienna University of TechnologyAustria

Personalised recommendations