Simulation and Experimental Evaluation of the Contribution of Biarticular Gastrocnemius Structure to Joint Synchronization in Human-Inspired Three-Segmented Elastic Legs

  • Dorian Scholz
  • Christophe Maufroy
  • Stefan Kurowski
  • Katayon Radkhah
  • Oskar von Stryk
  • André Seyfarth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7628)

Abstract

The humanoid robot BioBiped2 is powered by series elastic actuators (SEA) at the leg joints. As motivated by the human muscle architecture comprising monoarticular and biarticular muscles, the SEA at joint level are supported by elastic elements spanning two joints. In this study we demonstrate in simulation and in robot experiments, to what extend synchronous joint operation can be enhanced by introducing elastic biarticular structures in the leg, reducing the risk of over-extending individual joints.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guenther, M., Blickhan, R.: Joint stiffness of the ankle and the knee in running. J. Biomech. 35, 1459–1474 (2002)CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Raibert, M.H.: Legged Robots that Balance. MIT Press, Cambridge (1986)Google Scholar
  4. 4.
    Hurst, J.W.: The Role and Implementation of Compliance in Legged Locomotion. PhD thesis, The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (2008)Google Scholar
  5. 5.
  6. 6.
    Lipfert, S.W.: Kinematic and Dynamic Similarities between Walking and Running. Verlag Dr. Kovac, Hamburg (2010)Google Scholar
  7. 7.
    Blickhan, R.: The spring-mass model for running and hopping. Journal of Biomechanics 22, 1217–1227 (1989)CrossRefGoogle Scholar
  8. 8.
    Seyfarth, A., Geyer, H., Guenther, M., Blickhan, R.: A movement criterion for running. J. Biomech.Google Scholar
  9. 9.
    Geyer, H., Seyfarth, A., Blickhan, R.: Compliant leg behaviour explains basic dynamics of walking and running. Proc. Royal Society B: Biological Sciences 273, 2861–2867 (2006)CrossRefGoogle Scholar
  10. 10.
    Pratt, G.A., Williamson, M.M.: Series elastic actuators. In: Proc. IEEE International Workshop on Intelligent Robots and Systems, pp. 399–406 (1995)Google Scholar
  11. 11.
    Pratt, J., Krupp, B.: Design of a bipedal walking robot. In: Proceedings of the 2008 SPIE, vol. 6962 (2008)Google Scholar
  12. 12.
    Radkhah, K., Maufroy, C., Maus, M., Scholz, D., Seyfarth, A., von Stryk, O.: Concept and design of the biobiped1 robot for human-like walking and running. International Journal of Humanoid Robotics 8(3), 439–458 (2011)CrossRefGoogle Scholar
  13. 13.
    Seyfarth, A., Guenther, M., Blickhan, R.: Stable operation of an elastic three-segmented leg. Biol. Cybern. 84, 365–382 (2001)MATHCrossRefGoogle Scholar
  14. 14.
    Rapoport, S., Mizrahi, J., Kimmel, E., Verbitsky, O., Isakov, E.: Constant and variable stiffness and damping of the leg joints in human hopping. J. Biomech. Eng. 125(4), 507–514 (2003)CrossRefGoogle Scholar
  15. 15.
    Zajac, F.E.: Muscle coordination of movement: a perspective. J. Biomech. 26, 109–124 (1993)CrossRefGoogle Scholar
  16. 16.
    van Ingen Schenau, G.J., Pratt, C.A., Macpherson, J.M.: Differential use and control of mono- and biarticular muscles. Human Movement Science 13(3-4), 495–517 (1994)CrossRefGoogle Scholar
  17. 17.
    Lens, T., Radkhah, K., von Stryk, O.: Realistic contact forces for manipulators and legged robots with high joint elasticity. In: Proc. 15th International Conference on Advanced Robotics (ICAR), pp. 34–41 (2011)Google Scholar
  18. 18.
    Farley, C.T., Morgenroth, D.C.: Leg stiffness primarily depends on ankle stiffness during human hopping. J. Biomech. 32, 267–273 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dorian Scholz
    • 1
  • Christophe Maufroy
    • 2
  • Stefan Kurowski
    • 1
  • Katayon Radkhah
    • 1
  • Oskar von Stryk
    • 1
  • André Seyfarth
    • 2
  1. 1.Department of Computer ScienceFachgebiet Simulation, Systemoptimierung und Robotik Technische Universität DarmstadtDarmstadtGermany
  2. 2.Lauflabor Locomotion LaboratoryTechnische Universität Darmstadt, Institut für SportwissenschaftDarmstadtGermany

Personalised recommendations