Simulating Complex Robotic Scenarios with MORSE

  • Gilberto Echeverria
  • Séverin Lemaignan
  • Arnaud Degroote
  • Simon Lacroix
  • Michael Karg
  • Pierrick Koch
  • Charles Lesire
  • Serge Stinckwich
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7628)


MORSE is a robotic simulation software developed by roboticists from several research laboratories. It is a framework to evaluate robotic algorithms and their integration in complex environments, modeled with the Blender 3D real-time engine which brings realistic rendering and physics simulation. The simulations can be specified at various levels of abstraction. This enables researchers to focus on their field of interest, that can range from processing low-level sensor data to the integration of a complete team of robots. After nearly three years of development, MORSE is a mature tool with a large collection of components, that provides many innovative features: software-in-the-loop connectivity, multiple middleware support, configurable components, varying levels of simulation abstraction, distributed implementation for large scale multi-robot simulations and a human avatar that can interact with robots in virtual environments. This paper presents the current state of MORSE, highlighting its unique features in use cases.


Real Robot Python Script High Level Architecture Simulated World Human Avatar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rusu, R.B., Maldonado, A., Beetz, M., Gerkey, B.P.: Extending Player/Stage/Gazebo towards cognitive robots acting in ubiquitous sensor-equipped environments. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) Workshop for Network Robot Systems, Rome, Italy (2007)Google Scholar
  2. 2.
    Gerkey, B.P., Vaughan, R.T., Howard, A.: The Player/Stage Project: Tools for Multi-Robot and Distributed Sensor Systems. In: Proceedings of the 11th International Conference on Advanced Robotics, pp. 317–323 (2003)Google Scholar
  3. 3.
    Vaughan, R.: Massively Multi-robot Simulation in Stage. Swarm Intelligence 2, 189–208 (2008)CrossRefGoogle Scholar
  4. 4.
    Koenig, N., Howard, A.: Design and Use Paradigms for Gazebo, An Open-Source Multi-Robot Simulator. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2149–2154 (2004)Google Scholar
  5. 5.
    Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: USARSim: a robot simulator for research and education. In: Proceedings of the 2007 IEEE Conference on Robotics and Automation, pp. 1400–1405 (April 2007)Google Scholar
  6. 6.
    Michel, O.: Webots: Professional mobile robot simulation. Journal of Advanced Robotics Systems 1(1), 39–42 (2004)Google Scholar
  7. 7.
    Freese, M., Singh, S., Ozaki, F., Matsuhira, N.: Virtual Robot Experimentation Platform V-REP: A Versatile 3D Robot Simulator. In: Ando, N., Balakirsky, S., Hemker, T., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2010. LNCS, vol. 6472, pp. 51–62. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Echeverria, G., Lassabe, N., Degroote, A., Lemaignan, S.: Modular open robots simulation engine: Morse. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 46–51 (May 2011)Google Scholar
  9. 9.
    Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source Robot Operating System. In: ICRA Workshop on Open Source Software (2009)Google Scholar
  10. 10.
    Pocolibs: Posix communication library,
  11. 11.
    Metta, G., Fitzpatrick, P., Natale, L.: YARP: yet another robot platform. International Journal of Advanced Robotic Systems 3(1), 43–48 (2006)Google Scholar
  12. 12.
  13. 13.
    Smits, R., De Laet, T., Claes, K., Bruyninckx, H., De Schutter, J.: iTASC: a tool for multi-sensor integration in robot manipulation. In: IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, pp. 426–433 (August 2008)Google Scholar
  14. 14.
    Teichteil-Königsbuch, F., Lesire, C., Infantes, G.: A Generic Framework for Anytime Execution-driven Planning in Robotics. In: Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, pp. 299–304 (2011)Google Scholar
  15. 15.
    Carvalho Chanel, C.P., Teichteil-Königsbuch, F., Lesire, C.: POMDP-based online target detection and recognition for autonomous UAVs. In: Proceedings of the 7th Conference on Prestigious Applications of Intelligent Systems (PAIS), Montpellier, France (2012)Google Scholar
  16. 16.
    Boumghar, R., Lacroix, S., Lefebvre, O.: An information-driven navigation strategy for autonomous navigation in unknown environments. In: 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 172–177 (November 2011)Google Scholar
  17. 17.
    Mallet, A., Herrb, M.: Recent developments of the GenoM robotic component generator. In: 6th National Conference on Control Architectures of Robots, Grenoble, France. INRIA Grenoble Rhône-Alpes (May 2011)Google Scholar
  18. 18.
    Bruyninckx, H., Soetens, P., Koninckx, B.: The Real-Time Motion Control Core of the Orocos Project. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 2766–2771 (September 2003)Google Scholar
  19. 19.
    Dhouib, S., du Lac, N., Farges, J.-L., Gerard, S., Hemaissia-Jeannin, M., Lahera-Perez, J., Millet, S., Patin, B., Stinckwich, S.: Control architecture concepts and properties of an ontology devoted to exchanges in mobile robotics. In: Proceedings of the 6th National Conference on ”Control Architecture for Robots” (2011)Google Scholar
  20. 20.
    Barbier, M., Gabard, J.-F., Bertholom, A., Dupas, Y.: An Onboard Software Decisional Architecture for Rapid Environmental Assessment Missions. In: Proceedings of the 18th IFAC World Congress, Milano, Italy, pp. 11797–11802 (2011)Google Scholar
  21. 21.
    Kuhl, F., Weatherly, R., Dahmann, J.: Creating computer simulation systems: an introduction to the high level architecture. Prentice Hall PTR, Upper Saddle River (1999)Google Scholar
  22. 22.
    Lacouture, J., Gascueña, J., Gleizes, M.-P., Glize, P., Garijo, F., Fernández-Caballero, A.: Rosace: Agent-based Systems for Dynamic Task Allocation in Crisis Management. In: Demazeau, Y., Müller, J.P., Rodríguez, J.M.C., Pérez, J.B. (eds.) Advances on PAAMS. AISC, vol. 155, pp. 255–259. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Kruse, T., Kirsch, A., Sisbot, E.A., Alami, R.: Exploiting human cooperation in human-centered robot navigation. In: IEEE International Symposium in Robot and Human Interactive Communication, Ro-Man (2010)Google Scholar
  24. 24.
    Lichtenthaeler, C., Lorenz, T., Karg, M., Kirsch, A.: Increasing Perceived Value Between Human and Robots - Measuring Legibility in Human Aware Navigation. In: IEEE Workshop on Advanced Robotics and its Social Impacts (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gilberto Echeverria
    • 1
    • 2
  • Séverin Lemaignan
    • 1
    • 2
    • 3
  • Arnaud Degroote
    • 1
    • 2
  • Simon Lacroix
    • 1
    • 2
  • Michael Karg
    • 3
  • Pierrick Koch
    • 3
  • Charles Lesire
    • 5
  • Serge Stinckwich
    • 4
    • 6
  1. 1.CNRS, LAASToulouseFrance
  2. 2.UPS, INSA, INP, ISAE, LAASUniversité de ToulouseToulouseFrance
  3. 3.Institute for Advanced StudiesTechnische Universität MünchenGarchingGermany
  4. 4.UMR 6072 GREYCUniversité de Caen-Basse Normandie/CNRS/ENSICAENFrance
  5. 5.ONERA – The French Aerospace LabToulouseFrance
  6. 6.UMI 209 UMMISCOIRD/IFI/Vietnam National UniversityVietnam

Personalised recommendations