Relationship-Preserving Change Propagation in Process Ecosystems

  • Tri A. Kurniawan
  • Aditya K. Ghose
  • Hoa Khanh Dam
  • Lam-Son Lê
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7636)


As process-orientation continues to be broadly adopted – evidenced by the increasing number of large business process repositories, managing changes in such complex repositories becomes a growing issue. A critical aspect in evolving business processes is change propagation: given a set of primary changes made to a process in a repository, what additional changes are needed to maintain consistency of relationships between various processes in the repository. In this paper, we view a collection of interrelated processes as an ecosystem in which inter-process relationships are formally defined through their annotated semantic effects. We also argue that change propagation is in fact the process of restoring consistency-equilibrium of a process ecosystem. In addition, the underlying change propagation mechanism of our framework is leveraged upon the well-known Constraint Satisfaction Problem (CSP) technology. Our initial experimental results indicate the efficiency of our approach in propagating changes within medium-sized process repositories.


inter-process relationship semantic effect process ecosystem change propagation constraint network 


  1. 1.
    Aryani, A., Peake, I.D., Hamilton, M.: Domain-based change propagation analysis: An enterprise system case study. In: 2010 IEEE International Conference on Software Maintenance (ICSM), pp. 1–9. IEEE (2010)Google Scholar
  2. 2.
    Bartak, R.: Constraint propagation and backtracking-based search. Charles Universität, Prag (2005)Google Scholar
  3. 3.
    Chua, D.K.H., Hossain, M.A.: Predicting change propagation and impact on design schedule due to external changes. IEEE Trans. on Eng. Management (99), 1–11Google Scholar
  4. 4.
    Dam, H.K., Winikoff, M.: Supporting change propagation in UML models. In: 2010 IEEE International Conf. on Software Maintenance (ICSM), pp. 1–10. IEEE (2010)Google Scholar
  5. 5.
    Dechter, R.: Enhancement schemes for constraint processing: Backjumping, learning, and cutset decomposition. Artificial Intelligence 41, 271–312 (1990)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers (2003)Google Scholar
  7. 7.
    Dijkman, R., Rosa, M., Reijers, H.: Managing large collections of business process models-current techniques and challenges. Comp. in Industry 63(2), 91–97 (2012)CrossRefGoogle Scholar
  8. 8.
    Ekanayake, C.C., La Rosa, M., ter Hofstede, A.H.M., Fauvet, M.-C.: Fragment-Based Version Management for Repositories of Business Process Models. In: Meersman, R., Dillon, T., Herrero, P., Kumar, A., Reichert, M., Qing, L., Ooi, B.-C., Damiani, E., Schmidt, D.C., White, J., Hauswirth, M., Hitzler, P., Mohania, M. (eds.) OTM 2011, Part I. LNCS, vol. 7044, pp. 20–37. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Ghose, A., Koliadis, G.: Model eco-systems: preliminary work. In: The Fifth Asia-Pacific Conf. on Conceptual Modelling, pp. 19–26. Australian Comp. Society (2008)Google Scholar
  10. 10.
    Ghose, A., Koliadis, G., Chueng, A.: Rapid Business Process Discovery (R-BPD). In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 391–406. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Hill, J.B., Cantara, M., Deitert, E., Kerremans, M.: Magic quadrant for business process management suites. Tech. rep., Gartner Research (2007)Google Scholar
  12. 12.
    Hinge, K., Ghose, A., Koliadis, G.: Process SEER: A tool for semantic effect annotation of business process models. In: IEEE International Enterprise Distributed Object Computing Conference, EDOC 2009, pp. 54–63. IEEE (2009)Google Scholar
  13. 13.
    Koliadis, G., Ghose, A.: A Conceptual Framework for Business Process Redesign. In: Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer, P., Ukor, R. (eds.) BPMDS 2009 and EMMSAD 2009. LNBIP, vol. 29, pp. 14–26. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Koliadis, G., Ghose, A.: Verifying semantic business process models in inter-operation. In: Int. Conf. on Services Computing 2007, pp. 731–738. IEEE (2007)Google Scholar
  15. 15.
    Kurniawan, T.A., Ghose, A.K., Lê, L.-S., Dam, H.K.: On Formalizing Inter-process Relationships. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part II. LNBIP, vol. 100, pp. 75–86. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    La Rosa, M., Dumas, M., Uba, R., Dijkman, R.: Business process model merging: an approach to business process consolidation. ACM Transactions on Software Engineering and Methodology (TOSEM) (in press, 2012)Google Scholar
  17. 17.
    Minton, S., Johnston, M.D., Philips, A.B., Laird, P.: Minimizing conflicts: A heuristic repair method for constraint satisfaction and scheduling problems. Artificial Intelligence 58, 161–205 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Wang, Y., Yang, J., Zhao, W.: Change impact analysis for service based business processes. In: IEEE International Conference on Service-Oriented Computing and Applications, SOCA 2010, pp. 1–8. IEEE (2010)Google Scholar
  19. 19.
    Weber, B., Rinderle, S., Reichert, M.: Change Patterns and Change Support Features in Process-Aware Information Systems. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007. LNCS, vol. 4495, pp. 574–588. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Weidlich, M., Weske, M., Mendling, J.: Change propagation in process models using behavioural profiles. In: Int. Conf. on Services Computing, SCC 2009, pp. 33–40. IEEE (2009)Google Scholar
  21. 21.
    White, S.A., Miers, D.: BPMN: Modeling and Reference Guide. Future Strategies Inc. (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tri A. Kurniawan
    • 1
  • Aditya K. Ghose
    • 1
  • Hoa Khanh Dam
    • 1
  • Lam-Son Lê
    • 1
  1. 1.Decision Systems Lab., School of Computer Science and Software EngineeringUniversity of WollongongAustralia

Personalised recommendations