WSTRank: Ranking Tags to Facilitate Web Service Mining

  • Liang Chen
  • Zibin Zheng
  • Yipeng Feng
  • Jian Wu
  • Michael R. Lyu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7636)


Web service tags, terms annotated by users to describe the functionality or other aspects of Web services, are being treated as collective user knowledge for Web service mining. However, the tags associated with a Web service generally are listed in a random order or chronological order without considering the relevance information, which limits the effectiveness of tagging data. In this paper, we propose a novel tag ranking approach to automatically rank tags according to their relevance to the target Web service. In particular, service-tag network information is utilized to compute the relevance scores of tags by employing HITS model. Furthermore, we apply tag ranking approach in Web service clustering. Comprehensive experiments based on 15,968 real Web services demonstrate the effectiveness of the proposed tag ranking approach.


  1. 1.
    Ames, M., Naaman, M.: Why we tag: Motivations for annotation in mobile and online media. In: Proc. of the SIGCHI Conference on Human Factors in Computing Systems (CHI), pp. 971–980 (2007)Google Scholar
  2. 2.
    Arvelin, K.J., Kekalainen, J.: Cumulated gain-based evaluation of IR techniques. ACM Transactions on Information Systems 20(4), 422–446 (2002)CrossRefGoogle Scholar
  3. 3.
    Averbakh, A., Krause, D., Skoutas, D.: Exploiting User Feedback to Improve Semantic Web Service Discovery. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 33–48. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Azmeh, Z., Falleri, J.-R., Huchard, M., Tibermacine, C.: Automatic Web Service Tagging Using Machine Learning and WordNet Synsets. In: Filipe, J., Cordeiro, J. (eds.) WEBIST 2010. LNBIP, vol. 75, pp. 46–59. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Bouillet, E., Feblowitz, M., Feng, H., Liu, Z., Ranganathan, A., Riabov, A.: A folksonomy-based model of web services for discovery and automatic composition. In: IEEE International Conference on Services Computing, pp. 389–396 (2008)Google Scholar
  6. 6.
    Chen, L., Hu, L., Zheng, Z., Wu, J., Yin, J., Li, Y., Deng, S.: WTCluster: Utilizing Tags for Web Services Clustering. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 204–218. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Ding, Z., Lei, D., Yan, J., Bin, Z., Lun, A.: A web service discovery method based on tag. In: International Conference on Complex, Intelligent and Software Intensive Systems, pp. 404–408 (2010)Google Scholar
  8. 8.
    George, Z., Athman, B.: Web service mining. Springer (2010)Google Scholar
  9. 9.
    Hou, J., Zhang, J., Nayak, R., Bose, A.: Semantics-Based Web Service Discovery Using Information Retrieval Techniques. In: Geva, S., Kamps, J., Schenkel, R., Trotman, A. (eds.) INEX 2010. LNCS, vol. 6932, pp. 336–346. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Kennedy, L.S., Chang, S.F., Kozintsev, I.V.: To search or to label?: predicting the performance of search-based automatic image classifiers. In: Proc. of the 8th ACM International Workshop on Multimedia Information Retrieval, pp. 249–258 (2006)Google Scholar
  11. 11.
    Li, L., Shang, Y., Zhang, W.: Improvement of hits-based algorithms on web documents. In: Proc. of the 11th International World Wide Web Conference, pp. 527–535 (2002)Google Scholar
  12. 12.
    Sigurbjörnsson, B., van Zwol, R.: Flickr tag recommendation based on collective knowledge. In: Proc. of the 17th International Conference on World Wide Web (WWW), pp. 327–336 (2008)Google Scholar
  13. 13.
    Zheng, Z., Ma, H., Lyu, M.R., King, I.: Wsrec: A collaborative filtering based web service recommender system. In: Proc. of the 7th International Conference on Web Services (ICWS), pp. 437–444 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Liang Chen
    • 1
  • Zibin Zheng
    • 2
  • Yipeng Feng
    • 1
  • Jian Wu
    • 1
  • Michael R. Lyu
    • 2
  1. 1.Zhejiang UniversityChina
  2. 2.The Chinese University of Hong KongChina

Personalised recommendations