Modeling User’s Non-functional Preferences for Personalized Service Ranking

  • Rozita Mirmotalebi
  • Chen Ding
  • Chi-Hung Chi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7636)


Modeling users’ online behavior has great benefit for many e-Commerce web sites and search engines. In the context of software service selection, if we could understand users’ personal preferences, we could rank the services in a more satisfactory way. Many users have some general preferences on the desired values of non-functional properties (e.g. provider history, service popularity, etc.) of services, even if they may not explicitly define them. In this paper, we propose to build user profiles on these non-functional preferences, and then use them to personalize the ranking results for individual users. Our experiment showed that personalized ranking could promote the services matching with the user preferred non-functional values to higher positions, making it easier for users to identify their desired services. We also tested how different factors impact the degree of improvement on the ranking accuracy.


Service Ranking Service Selection Non-functional Preference User Modeling Personalization 


  1. 1.
    Averbakh, A., Krause, D., Skoutas, D.: Recommend me a Service: Personalized Semantic Web Service Matchmaking. In: Proceedings of the 17th Workshop on Adaptivity and User Modeling in Interactive Systems (2009)Google Scholar
  2. 2.
    Birukou, A., Blanzieri, E., D’Andrea, V., Giorgini, P., Kokash, N.: Improving Web Service Discovery with Usage Data. IEEE Software 24(6), 47–54 (2007)CrossRefGoogle Scholar
  3. 3.
    García, J.M., Ruiz, D., Ruiz-Cortés, A.: A Model of User Preferences for Semantic Services Discovery and Ranking. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part II. LNCS, vol. 6089, pp. 1–14. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Howard, J.A., Sheth, J.N.: The Theory of Buyer Behavior. John Wiley & Sons (1969)Google Scholar
  5. 5.
    Klan, F., König-Ries, B.: A Personalized Approach to Experience-Aware Service Ranking and Selection. In: Greco, S., Lukasiewicz, T. (eds.) SUM 2008. LNCS (LNAI), vol. 5291, pp. 270–283. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Manikrao, U.S., Prabhakar, T.V.: Dynamic Selection of Web Services with Recommendation System. In: Proceedings of the International Conference on Next Generation Web Services Practices, pp. 117–121 (2005)Google Scholar
  7. 7.
    Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press (2008)Google Scholar
  8. 8.
    Qiu, F., Cho, J.: Automatic Identification of User Interest for Personalized Search. In: Proceedings of the 15th International Conference on World Wide Web, pp. 727–736 (2006)Google Scholar
  9. 9.
    Rong, W., Liu, K., Liang, L.: Personalized Web Service Ranking via User Group combining Association Rule. In: Proceedings of the 7th International Conference on Web Services, pp. 445–452 (2009)Google Scholar
  10. 10.
    Schröpfer, C., Binshtok, M., Shimony, S.E., Dayan, A., Brafman, R., Offermann, P., Holschke, O.: Introducing Preferences over NFPs into Service Selection in SOA. In: Di Nitto, E., Ripeanu, M. (eds.) ICSOC 2007. LNCS, vol. 4907, pp. 68–79. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Shafiq, M.O., Alhajj, R., Rokne, J.: On the Social Aspects of Personalized Ranking for Web Services. In: Proceedings of the IEEE International Conference on High Performance Computing and Communications, pp. 86–93 (2011)Google Scholar
  12. 12.
    Tran, V.X., Tsuji, H., Masuda, R.: A New QoS Ontology and its QoS-based Ranking Algorithm for Web Services. Simulation Modeling Practice and Theory 17(8), 1378–1398 (2009)CrossRefGoogle Scholar
  13. 13.
    Vu, L.H., Proto, F., Aberer, K., Hauswirth, M.: An Extensible and Personalzied Approach to QoS-enabled Service Discovery. In: Proceedings of the 11th International Database Engineering and Applications Symposium, pp. 37–45 (2007)Google Scholar
  14. 14.
    Wang, H.C., Lee, C.S., Ho, T.H.: Combining Subjective and Objective QoS Factors for Personalized Web Service Selection. Expert Systems with Applications 32(2), 571–584 (2007)CrossRefGoogle Scholar
  15. 15.
    Zhang, Q., Ding, C., Chi, C.H.: Collaborative Filtering Based Service Ranking using Invocation Histories. In: Proceedings of the IEEE Internation Conference on Web Services, pp. 195–202 (2011)Google Scholar
  16. 16.
    Zheng, Z., Zhang, Y., Lyu, M.R.: CloudRank: A QoS-Driven Component Ranking Framework for Cloud Computing. In: Proceedings of the 29th IEEE International Symposium on Reliable Distributed Systems, pp. 184–193 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rozita Mirmotalebi
    • 1
  • Chen Ding
    • 1
  • Chi-Hung Chi
    • 2
    • 3
  1. 1.Department of Computer ScienceRyerson UniversityTorontoCanada
  2. 2.School of SoftwareTsinghua UniversityBeijingChina
  3. 3.Intelligent Sensing and Systems Laboratory – CSIROHobartAustralia

Personalised recommendations