A Constraint-Based Approach to Quality Assurance in Service Choreographies

  • Dragan Ivanović
  • Manuel Carro
  • Manuel V. Hermenegildo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7636)


The knowledge about the quality characteristics (QoS) of service compositions is crucial for determining their usability and economic value; the quality of service compositions is usually regulated using Service Level Agreements (SLAs). While end-to-end SLAs are well suited for request-reply interactions, more complex, decentralized, multi-participant compositions (service choreographies) typically need multiple message exchanges between stateful parties and the corresponding SLAs thus involve several cooperating parties with interdependent QoS. The usual approaches to determining QoS ranges structurally (which are by construction easily composable) are not applicable in this scenario. Additionally, the intervening SLAs may depend on the exchanged data. We present an approach to data-aware QoS assurance in choreographies through the automatic derivation of composable QoS models from participant descriptions. Such models are based on a message typing system with size constraints and are derived using abstract interpretation. The models obtained have multiple uses including run-time prediction, adaptive participant selection, or design-time compliance checking. We also present an experimental evaluation and discuss the benefits of the proposed approach.


Service Compositions Quality of Service Quality Assurance Constraints Abstract Interpretation 


  1. 1.
    Apt, K.R.: Principles of Constraint Programming. Cambridge University Press (2003)Google Scholar
  2. 2.
    Apt, K.R., Wallace, M.G.: Constraint Logic Programming Using ECLIPSE. Cambridge University Press (2007)Google Scholar
  3. 3.
    Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2012, pp. 191–202. ACM, New York (2012)CrossRefGoogle Scholar
  4. 4.
    Cousot, P., Cousot, R.: Abstract Interpretation: a Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. In: Proc. of POPL 1977, pp. 238–252. ACM Press (1977)Google Scholar
  5. 5.
    Ivanović, D., Carro, M., Hermenegildo, M.: Exploring the impact of inaccuracy and imprecision of qos assumptions on proactive constraint-based QoS prediction for service orchestrations. In: Proceedings of the 4th International Workshop on Principles of Engineering Service-Oriented Systems, PESOS 2012, pp. 931–937. IEEE Press (June 2012)Google Scholar
  6. 6.
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press (2002)Google Scholar
  7. 7.
    Dechter, R.: Constraint Processing. Morgan Kauffman Publishers (2003)Google Scholar
  8. 8.
    Decker, G., Kopp, O., Leymann, F., Weske, M.: BPEL4Chor: Extending BPEL for Modeling Choreographies. In: ICWS, pp. 296–303 (2007)Google Scholar
  9. 9.
    Dezani-Ciancaglini, M., de’Liguoro, U.: Sessions and Session Types: An Overview. In: Laneve, C., Su, J. (eds.) WS-FM 2009. LNCS, vol. 6194, pp. 1–28. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Di Nitto, E., Ghezzi, C., Metzger, A., Papazoglou, M., Pohl, K.: A journey to highly dynamic, self-adaptive service-based applications. Automated Software Engineering 15, 313–341 (2008), doi:10.1007/s10515-008-0032-xCrossRefGoogle Scholar
  11. 11.
    Faltings, B., Yokoo, M. (eds.): Artificial Intelligence Journal: Special Issue on Distributed Constraint Satisfaction, vol. 161. Elsevier Science Publishers Ltd., Essex (2005)Google Scholar
  12. 12.
    Hielscher, J., Kazhamiakin, R., Metzger, A., Pistore, M.: A Framework for Proactive Self-adaptation of Service-Based Applications Based on Online Testing. In: Mähönen, P., Pohl, K., Priol, T. (eds.) ServiceWave 2008. LNCS, vol. 5377, pp. 122–133. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Ivanović, D., Carro, M., Hermenegildo, M.: Towards Data-Aware QoS-Driven Adaptation for Service Orchestrations. In: Proceedings of the 2010 IEEE International Conference on Web Services, ICWS 2010, Miami, FL, USA, July 5-10, pp. 107–114. IEEE (2010)Google Scholar
  14. 14.
    Ivanović, D., Carro, M., Hermenegildo, M.: Constraint-Based Runtime Prediction of SLA Violations in Service Orchestrations. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 62–76. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Leitner, P., Michlmayr, A., Rosenberg, F., Dustdar, S.: Monitoring, prediction and prevention of sla violations in composite services. In: ICWS, pp. 369–376. IEEE Computer Society (2010)Google Scholar
  16. 16.
    Metzger, A., Benbernou, S., Carro, M., Driss, M., Kecskemeti, G., Kazhamiakin, R., Krytikos, K., Mocci, A., Di Nitto, E., Wetzstein, B., Silvestril, F.: Analytical Quality Assurance. In: Papazoglou, M.P., Pohl, K., Parkin, M., Metzger, A. (eds.) Service Research Challenges and Solutions. LNCS, vol. 6500, pp. 209–270. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Object Management Group. Business Process Modeling Notation (BPMN), Version 1.2 (January 2009)Google Scholar
  18. 18.
    Reynolds, J.C.: The discoveries of continuations. LISP and Symbolic Computation Journal 6, 233–247 (1993)CrossRefGoogle Scholar
  19. 19.
    Sammodi, O., Metzger, A., Franch, X., Oriol, M., Marco, J., Pohl, K.: Usage-based online testing for proactive adaptation of service-based applications. In: COMPSAC 2011 – The Computed World: Software Beyond the Digital Society. IEEE Computer Society (2011)Google Scholar
  20. 20.
    Schmieders, E., Metzger, A.: Preventing Performance Violations of Service Compositions Using Assumption-Based Run-Time Verification. In: Abramowicz, W., Llorente, I.M., Surridge, M., Zisman, A., Vayssière, J. (eds.) ServiceWave 2011. LNCS, vol. 6994, pp. 194–205. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Stein, S., Payne, T.R., Jennings, N.R.: Robust execution of service workflows using redundancy and advance reservations. IEEE T. Services Computing 4(2), 125–139 (2011)CrossRefGoogle Scholar
  22. 22.
    Tselentis, G., Dominigue, J., Galis, A., Gavras, A., Hausheer, D.: Towards the Future Internet: A European Research Perspective. IOS Press, Amsterdam (2009)Google Scholar
  23. 23.
    van der Aalst, W.M.P., Dumas, M., Ouyang, C., Rozinat, A., Verbeek, H.M.W.: Choreography Conformance Checking: An Approach based on BPEL and Petri Nets. In: The Role of Business Processes in Service Oriented Architectures, Dagstuhl Seminar Proceedings (2006)Google Scholar
  24. 24.
    World Wide Web Consortium. Web Services Choreography Description Language Version 1.0 (November 2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dragan Ivanović
    • 1
  • Manuel Carro
    • 1
    • 2
  • Manuel V. Hermenegildo
    • 1
    • 2
  1. 1.School of Computer ScienceT. University of Madrid (UPM)Spain
  2. 2.IMDEA Software InstituteSpain

Personalised recommendations