Shocks in Cavitating Flows

  • Nikolaus A. Adams
  • Steffen J. Schmidt
Part of the Shock Wave Science and Technology Reference Library book series (SHOCKWAVES, volume 8)


We present two numerical methods for simulation of compressible multiphase flows with phase transition. The first approach is a two-fluid method using sharp interface treatment and non-equilibrium mass transfer terms. This technique is applied to investigate collapsing vapor bubbles and resulting shock patterns. Depending on the bubble–wall configuration, different types of liquid jets are observed during the collapse stages of the bubbles. These results provide detailed insight into collapse processes and resulting peak loads. The second approach is a singlefluid method using local thermodynamic equilibrium assumptions. Its applicability to simulate cavitating flows is assessed on example of hydrofoil cavitation as well as for the collapse of a bubble cluster. Typical features of sheet and cloud cavitation are reproduced and the formation of shocks due to collapsing vapor regions is analyzed. In case of the investigated cluster of vapor bubbles, a collapse front propagating toward the focal point of the collapse is predicted. This process leads to an amplification of the intensity of the final collapse.


Vapor Bubble Local Thermodynamic Equilibrium Bubble Collapse Bubble Shape Vapor Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andersen, A., Morch, K.A.: In situ Measurement of the Tensile Strength of Water. In: Proc. WIMRC Cavitation Forum 2011, e-publication, Warwick, UK, July 4 - 6 (2011)Google Scholar
  2. 2.
    Brennen, C.E.: Cavitation and Bubble Dynamics. Oxford University Press (1995)Google Scholar
  3. 3.
    Brennen, C.E.: An Introduction to Cavitation Fundamentals. In: Proc. WIMRC Cavitation Forum 2011, e-publication, Warwick, UK, July 4 - 6 (2011)Google Scholar
  4. 4.
    D’Agostino, L., Salvetti, M.V.: Fluid Dynamics of Cavitation and Cavitating Turbopumps. Springer (2007)Google Scholar
  5. 5.
    Fedkiw, R., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comp. Phys. 152, 457–492 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Franc, J.P., Michel, J.M.: Fundamentals of Cavitation. Springer (2004)Google Scholar
  7. 7.
    Garnier, E., Adams, N., Sagaut, P.: Large Eddy Simulation for Compressible Flows. Springer (2009)Google Scholar
  8. 8.
    Grinstein, F.F., Margolin, L.G., Rider, W.J.: Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics. Cambridge University Press (2007)Google Scholar
  9. 9.
    Gullbrand, J., Chow, F.K.: The Effect of Numerical Errors and Turbulence Models in Large-Eddy Simulations of Channel Flow, with and without Explicit Filtering. J. Fluid Mech. 495 (2003)Google Scholar
  10. 10.
    Hickel, S., Mihatsch, M., Schmidt, S.J.: Implicit Large Eddy Simulation of Cavitation in Micro Channel Flows. In: Proc. WIMRC Cavitation Forum 2011, e-publication, Warwick, UK, July 4-6 (2011)Google Scholar
  11. 11.
    Hirschfelder, J.O., Curtiss, C.F., Bird, R.B.: Molecular Theory of Gases and Liquids. John Wiley and Sons (1954)Google Scholar
  12. 12.
    Hu, X.Y., Khoo, B.C., Adams, N.A., Huang, F.L.: A conservative interface method for compressible flows. J. Comp. Phys. 219, 553–578 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    The International Association for the Properties of Water and Steam,
  14. 14.
    Jiang, G.S., Shu, C.W.: Efficient Implementation of Weighted ENO schemes. J. Comp. Phys. 126, 202–228 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Kawanami, J., Kato, H., Yamaguchi, H.: Three-Dimensional Characteristics of the Cavities Formed on a Two-Dimensional Hydofoil. In: Proc. 3rd CAV 1998 - 3rd International Symposium on Cavitation, Grenoble, France, April 7-10, 1998, vol. 1, pp. 191-196 (2009)Google Scholar
  16. 16.
    Kendrinskii, V.K.: Hydrodynamics of Explosion. Springer (2005)Google Scholar
  17. 17.
    Kennedy, C.A., Carpenter, M.H., Lewis, R.M.: Low-storage, Explicit Runge-Kutta Schemes for the Compressible Navier-Stokes Equations. Applied Numerical Mathematics, vol. 35 (2000)Google Scholar
  18. 18.
    Knapp, R.T., Daily, J.W., Hammitt, F.G.: Cavitation. McGraw-Hill (1970)Google Scholar
  19. 19.
    Lauer, E., Hu, X.Y., Hickel, A., Adams, N.A.: Numerical modelling and investigation of symmetric and asymmetric cavitation bubble dynamics. Phys. Fluids (accepted 2012)Google Scholar
  20. 20.
    Lauer, E., Hu, X.Y., Hickel, A., Adams, N.A.: Numerical modelling and investigation of symmetric and asymmetric cavitation bubble dynamics. Comp. Fluids (under revision)Google Scholar
  21. 21.
    Lauterborn, W.: Cavitation and Inhomogeneities in Underwater Acoustics. Springer (1980)Google Scholar
  22. 22.
    Lecoffre, Y.: Cavitation Bubble Trackers. Balkema (1999)Google Scholar
  23. 23.
    Lindau, O., Lauterborn, W.: Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. J. Fluid Mech. 479, 327–348 (2003)zbMATHCrossRefGoogle Scholar
  24. 24.
    Menikoff, R., Plor, B.J.: The Riemann Problem for Fluid Flow of Real Materials. Rev. Modern Physics 61 (1989)Google Scholar
  25. 25.
    Mihatsch, M., Schmidt, S.J., Thalhamer, M., Adams, N.A.: Numerical Prediction of Ero-sive Collapse Events in Unsteady Compressible Cavitating Flows. In: Proc. Marine 2011, International Conference on Computational Methods in Marine Engineering, Barcelona (2011)Google Scholar
  26. 26.
    Moran, M.J., Shapiro, H.N., Boettner, D.D., Bailey, M.B.: Fundamentals of Engineering Thermodynamics. John Wiley and Sons (2011)Google Scholar
  27. 27.
    Reisman, G.E., Wang, Y.-C., Brennen, C.E.: Observations of Shock Waves in Cloud Cavitation. Journal of Fluid Mechanics 355 (1998)Google Scholar
  28. 28.
    Schmidt, S.J., Sezal, I.H., Schnerr, G.H., Thalhamer, M.: Riemann Techniques for the Simulation of Compressible Liquid Flows with Phase-transition at all Mach numbers - Shock and Wave Dynamics in Cavitating 3-D Micro and Macro Systems. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, January 7-10 , Reno, Nevada, USA, AIAA paper 2008-1238 (2008)Google Scholar
  29. 29.
    Schmidt, S.J., Thalhamer, M., Schnerr, G.H.: Inertia Controlled Instability and Small Scale Structures of Sheet and Cloud Cavitation. In: Proc. 7th CAV 2009 - 7th International Symposium on Cavitation, Ann Arbor, Michigan, USA, August 16- 21, paper 17. CD-ROM publication (2009)Google Scholar
  30. 30.
    Schmidt, S.J., Mihatsch, M., Thalhamer, M., Adams, N.A.: Assessment of the Prediction Capability of a Thermodynamic Cavitation Model for the Collapse Characteristics of a Vapor-Bubble Cloud. In: Proc. WIMRC Cavitation Forum 2011, e-publication, Warwick, UK, July 4 - 6 (2011)Google Scholar
  31. 31.
    Schnerr, G.H., Sezal, I.H., Schmidt, S.J.: Numerical Investigation of Three-dimensional Cloud Cavitation with Special Emphasis on Collapse Induced Shock Dynamics. Physics of Fluids 20(4) (2008)Google Scholar
  32. 32.
    Schrage, R.W.: A Theoretical Study of Interphase Mass Transfer. Columbia University Press (1953)Google Scholar
  33. 33.
    Shah, Y.T., Pandit, A.B., Moholkar, V.S.: Cavitation Reaction Engineering. Kluwer (1999)Google Scholar
  34. 34.
    Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comp. Phys. 77, 439–471 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Tomita, Y., Shima, A.: Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse. J. Fluid Mech. 169, 535–564 (1986)CrossRefGoogle Scholar
  36. 36.
    Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer (1999)Google Scholar
  37. 37.
    Trevena, D.H.: Cavitation and the Generation of Tension in Liquids. J. Phys. D: Applied Physics 17 (1984)Google Scholar
  38. 38.
    Whitham, G.B.: Linear and Nonlinear Waves. John Wiley and Sons (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Technische Universität MünchenMünchenGermany

Personalised recommendations