Symbolic Model-Checking of Stateful Timed CSP Using BDD and Digitization

  • Truong Khanh Nguyen
  • Jun Sun
  • Yang Liu
  • Jin Song Dong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7635)


Stateful Timed CSP has been recently proposed to model (and verify) hierarchical real-time systems. It is an expressive modeling language which combines data structure/operations, complicated control flows (modeled using compositional process operators adopted from Timed CSP), and real-time requirements like deadline and within. It has been shown that Stateful Timed CSP is equivalent to closed timed automata with silent transitions, which implies that the timing constraints of Stateful Timed CSP can be captured using explicit tick events, through digitization. In order to tackle the state space explosion problem, we develop a BDD-based symbolic model checking approach to verify Stateful Timed CSP models. Due to the rich language features, BDD-based system encoding and verification is highly nontrivial. In this work, we show how to systematically encode Stateful Timed CSP models in BDD. Our approach consists of two steps. The first step is to identify maximum primitive components of a given system and then generate finite state machines (FSMs) from them, applying a set of symbolic firing rules. These FSMs are then encoded in the standard way. The second step is to compose the encoded components using a set of BDD-based compositional functions. The proposed method has been implemented in the PAT model checker. It supports properties like reachability, linear temporal logic, etc. The effectiveness of our technique is evaluated with benchmark systems.


Model Check Compositional Function Linear Temporal Logic Model Check Algorithm State Space Explosion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Science 126, 183–235 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Alur, R., Taubenfeld, G.: Results about Fast Mutual Exclusion. In: IEEE Real-Time Systems Symposium, pp. 12–22 (1992)Google Scholar
  3. 3.
    Beyer, D., Lewerentz, C., Noack, A.: Rabbit: A Tool for BDD-Based Verification of Real-Time Systems. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 122–125. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Dill, D.L.: Timing Assumptions and Verification of Finite-State Concurrent Systems. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  5. 5.
    Henzinger, T.A., Manna, Z., Pnueli, A.: What Good Are Digital Clocks? In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 545–558. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  6. 6.
    Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Efficient Emptiness Check for Timed Büchi Automata. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 148–161. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Hoare, C.A.R.: Communicating Sequential Processes. International Series in Computer Science. Prentice-Hall (1985)Google Scholar
  8. 8.
    Kesten, Y., Pnueli, A., Raviv, L.-O.: Algorithmic Verification of Linear Temporal Logic Specifications. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 1–16. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Lamport, L.: A Fast Mutual Exclusion Algorithm. ACM Trans. Comput. Syst. 5(1), 1–11 (1987)CrossRefGoogle Scholar
  10. 10.
    Lamport, L.: Real-Time Model Checking Is Really Simple. In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 162–175. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Lynch, N.A., Shavit, N.: Timing-Based Mutual Exclusion. In: IEEE Real-Time Systems Symposium, pp. 2–11 (1992)Google Scholar
  12. 12.
    Møller, J.B., Hulgaard, H., Andersen, H.R.: Symbolic Model Checking of Timed Guarded Commands Using Difference Decision Diagrams. J. Log. Algebr. Program. 52-53, 53–77 (2002)CrossRefGoogle Scholar
  13. 13.
    Nguyen, T.K., Sun, J., Liu, Y., Dong, J.S., Liu, Y.: BDD-based Discrete Analysis of Timed Systems (2012),
  14. 14.
    Nguyen, T.K., Sun, J., Liu, Y., Dong, J.S., Liu, Y.: Improved BDD-Based Discrete Analysis of Timed Systems. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 326–340. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Ouaknine, J., Worrell, J.: Timed CSP = Closed Timed Safety Automata. Electrical Notes Theoretical Computer Science 68(2) (2002)Google Scholar
  16. 16.
    Palikareva, H., Ouaknine, J., Roscoe, B.: Faster FDR Counterexample Generation Using SAT-Solving. ECEASST 23 (2009)Google Scholar
  17. 17.
    Roscoe, A.W., Gardiner, P.H.B., Goldsmith, M., Hulance, J.R., Jackson, D.M., Scattergood, J.B.: Hierarchical Compression for Model-Checking CSP or How to Check 1020 Dining Philosophers for Deadlock. In: Brinksma, E., Steffen, B., Cleaveland, W.R., Larsen, K.G., Margaria, T. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 133–152. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  18. 18.
    Schneider, S.: Concurrent and Real-Time Systems: The CSP Approach. Wiley (2000)Google Scholar
  19. 19.
    Sun, J., Liu, Y., Dong, J.S., Liu, Y., Shi, L., André, E.: Modeling and Verifying Hierarchical Real-time Systems using Stateful Timed CSP. TOSEM (to appear, 2012)Google Scholar
  20. 20.
    Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards Flexible Verification under Fairness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–714. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Sun, J., Liu, Y., Dong, J.S., Zhang, X.: Verifying Stateful Timed CSP Using Implicit Clocks and Zone Abstraction. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 581–600. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Tripakis, S.: Verifying Progress in Timed Systems. In: Katoen, J.-P. (ed.) ARTS 1999. LNCS, vol. 1601, pp. 299–314. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  23. 23.
    Vardi, M.Y., Wolper, P.: An Automata-Theoretic Approach to Automatic Program Verification. In: LICS, pp. 332–344. IEEE Computer Society (1986)Google Scholar
  24. 24.
    Wang, F.: Symbolic Verification of Complex Real-Time Systems with Clock-Restriction Diagram. In: FORTE, pp. 235–250 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Truong Khanh Nguyen
    • 2
  • Jun Sun
    • 1
  • Yang Liu
    • 3
  • Jin Song Dong
    • 2
  1. 1.ISTDSingapore University of Technology and DesignSingapore
  2. 2.School of ComputingNational University of SingaporeSingapore
  3. 3.Temasek LabNational University of SingaporeSingapore

Personalised recommendations