Advertisement

Time Constraints with Temporal Logic Programming

  • Meng Han
  • Zhenhua Duan
  • Xiaobing Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7635)

Abstract

This paper presents an approach for the real-time extension of Projection Temporal Logic (PTL) and the corresponding programming language, Timed Modeling, Simulation and Verification Language (TMSVL). To this end, quantitative temporal constraints are employed to limit the time duration bounded on a formula or a program. First, the syntax and semantics of TPTL formulas are defined and some logic laws are given. Then, the corresponding executable programming language TMSVL is presented. Moreover, the operational semantics of TMSVL is formalized. Finally, an example of modeling and verification is given to show how TMSVL works.

Keywords

temporal logic real-time system programming language modeling verification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Melliar-Smith, P.M.: Extending interval logic to real time systems. In: Proceedings of the Conference on Temporal Logci Specification, UK, pp. 224–242. Springer (April 1987)Google Scholar
  2. 2.
    Razouk, R., Gorlick, M.: Real-time interval logic for reasoning about executions of real-time programs. SIGSOFT Softw. Eng. Notes 14(8), 10–19 (1989)CrossRefGoogle Scholar
  3. 3.
    Alur, R., Henzinger, T.A.: A really temporal logic. In: Proceedings of the 30th IEEE Conference on Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos (1989)Google Scholar
  4. 4.
    Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Syst. 2(4), 255–299 (1990)CrossRefGoogle Scholar
  5. 5.
    Mattonlini, R., Nesi, P.: An Interval Logic for Real-Time System Specification. IEEE Trans. Softw. Eng. 27, 208–227 (2001)CrossRefGoogle Scholar
  6. 6.
    Duan, Z.: An Extended Interval Temporal Logic and A Framing Technique for Temporal Logic Programming. PhD Thesis, University of Newcastle upon Tyne (1996)Google Scholar
  7. 7.
    Duan, Z.: Temporal Logic and Temporal Logic Programming. Science Press, Beijing (2006)Google Scholar
  8. 8.
    Duan, Z., Koutny, M.: A Framed Temporal Logic Programming Language. Journal of Computer Science and Technology 19, 341–351 (2004)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Duan, Z., Koutny, M., Holt, C.: Projection in Temporal Logic Programming. In: Pfenning, F. (ed.) LPAR 1994. LNCS (LNAI), vol. 822, pp. 333–344. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  10. 10.
    Duan, Z., Yang, X., Koutny, M.: Semantics of Framed Temporal Logic Programs. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 356–370. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Duan, Z., Yang, X., Koutny, M.: Framed Temporal Logic Programming. Science of Computer Programming 70(1), 31–61 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Moszkowski, B.: Executing Temporal Logic Programs. Cambridge University Press (1986)Google Scholar
  13. 13.
    Yang, X., Duan, Z.: Operational semantics of Framed Tempura. J. Log. Algebr. Program. 78(1), 22–51 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Alur, R., Dill, D.: Automata for Modeling Real-Time Systems. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  15. 15.
    Kwon, Y., Agha, G.: LTLC: Linear Temporal Logic for Control. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 316–329. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Emerson, E.A., Mok, A.K., Sistla, A.P., Srinivasan, J.: Quantitative temporal reasoning. Real-Time Systems 4, 330–352 (1992)CrossRefGoogle Scholar
  17. 17.
    Alur, R., Courcoubetis, C., Dill, D.L.: Model checking for real-time systems. In: Proc. IEEE Fifth Symp. Logic in Computer Science, pp. 414–425 (1990)Google Scholar
  18. 18.
    Lamport, L.: The temporal logic of action. ACM Transations on Programming Languages and Ssystems 16(3), 872–923 (1994)CrossRefGoogle Scholar
  19. 19.
    Abadi, M., Lamport, L.: An old-fashioned recipe for real time. ACM Transactions on Programming Languages and Systems 16(5), 1543–1571 (1994)CrossRefGoogle Scholar
  20. 20.
    Ghezzi, C., Mandrioli, D., Morzenti, A.: TRIO: A logic language for executable specifications of real-time systems. The Journal of Systems and Software 12(2), 107–123 (1990)CrossRefGoogle Scholar
  21. 21.
    Tang, Z.S.: Temporal Logic Program Designing and Engineering, vol. 1. Science Press, Beijing (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Meng Han
    • 1
  • Zhenhua Duan
    • 1
  • Xiaobing Wang
    • 1
  1. 1.Institute of Computing Theory and Technology, and ISN LaboratoryXidian UniversityXi’anP.R. China

Personalised recommendations