An Integrated, Modular Framework for Computer Vision and Cognitive Robotics Research (icVision)

  • Jürgen Leitner
  • Simon Harding
  • Mikhail Frank
  • Alexander Förster
  • Jürgen Schmidhuber
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 196)

Abstract

We present an easy-to-use, modular framework for performing computer vision related tasks in support of cognitive robotics research on the iCub humanoid robot. The aim of this biologically inspired, bottom-up architecture is to facilitate research towards visual perception and cognition processes, especially their influence on robotic object manipulation and environment interaction. The icVision framework described provides capabilities for detection of objects in the 2D image plane and locate those objects in 3D space to facilitate the creation of a world model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)Google Scholar
  2. 2.
    Frank, M., et al.: The modular behavioral environment for humanoids and other robots (mobee). In: Int’l. Conference on Informatics in Control, Automation and Robotics (2012)Google Scholar
  3. 3.
    Gonzalez, R., Richard, E.W.: Digital image processing (2002)Google Scholar
  4. 4.
    Harding, S., Leitner, J., Schmidhuber, J.: Cartesian genetic programming for image processing. In: Genetic Programming Theory and Practice X. Springer (to appear, 2012)Google Scholar
  5. 5.
    Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge University Press (2000)Google Scholar
  6. 6.
    Hubel, D., Wensveen, J., Wick, B.: Eye, brain, and vision. Scientific American Library (1995)Google Scholar
  7. 7.
    Leitner, J., et al.: Autonomous learning of robust visual object detection on a humanoid (2012) (submitted to IEEE Int’l. Conference on Developmental Learning and Epigenetic Robotics)Google Scholar
  8. 8.
    Leitner, J., et al.: et al.: Mars terrain image classification using cartesian genetic programming. In: International Symposium on Artificial Intelligence (2012)Google Scholar
  9. 9.
    Leitner, J., et al.: Transferring spatial perception between robots operating in a shared workspace. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2012)Google Scholar
  10. 10.
    Marr, D.: Vision: A Computational Approach. Freeman & Co., San Francisco (1982)Google Scholar
  11. 11.
    Metta, G., Fitzpatrick, P., Natale, L.: YARP: Yet Another Robot Platform. International Journal of Advanced Robotics Systems 3(1) (2006)Google Scholar
  12. 12.
    Metta, G., et al.: The iCub humanoid robot: An open-systems platform for research in cognitive development. Neural Networks 23(8-9), 1125–1134 (2010)CrossRefGoogle Scholar
  13. 13.
    Miller, J.: An empirical study of the efficiency of learning boolean functions using a cartesian genetic programming approach. In: Genetic and Evolutionary Computation Conference (1999)Google Scholar
  14. 14.
    Miller, J.: Cartesian genetic programming. Cartesian Genetic Programming, 17–34 (2011)Google Scholar
  15. 15.
    Pattacini, U.: Modular Cartesian Controllers for Humanoid Robots: Design and Implementation on the iCub. Ph.D. thesis, RBCS, Italian Institute of Technology, Genova (2011)Google Scholar
  16. 16.
    Tsagarakis, N.G., et al.: iCub: the design and realization of an open humanoid platform for cognitive and neuroscience research. Advanced Robotics 21, 1151–1175 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jürgen Leitner
    • 1
  • Simon Harding
    • 2
  • Mikhail Frank
    • 1
  • Alexander Förster
    • 1
  • Jürgen Schmidhuber
    • 1
  1. 1.Dalle Molle Institute for Artificial Intelligence (IDSIA), USI/SUPSILuganoSwitzerland
  2. 2.Machine Intelligence, LtdDevonUK

Personalised recommendations