Advertisement

Curve Skeleton Extraction by Graph Contraction

  • Wei Jiang
  • Kai Xu
  • Zhi-Quan Cheng
  • Ralph R. Martin
  • Gang Dang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7633)

Abstract

In this paper, we propose a practical algorithm for extracting curve skeletons from a 3D shape represented by a triangular mesh. We first construct an initial skeleton graph by copying the connectivity and geometry information from the input mesh. We then perform iterative skeletonization over the nodes of the skeleton graph using coupled processes of graph contraction and surface clustering. In the contraction step, the skeleton graph is simplified and regularized with surface clustering: mesh vertices are clustered, while the positions of nodes in the skeleton graph are updated at the same time. Eventually, the skeleton graph is automatically simplified to an approximately-centered curve skeleton. Our algorithm naturally produces a skeleton-to-surface mapping, making the output skeletons directly applicable to skinning deformation.

Keywords

curve skeleton extraction graph contraction clustering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cornea, N.D., Silver, D., Min, P.: Curve-skeleton properties, applications, and algorithms. IEEE Transactions on Visualization and Computer Graphics 13(3), 530–548 (2007) 1, 2CrossRefGoogle Scholar
  2. 2.
    Amenta, N., Choi, S.: Voronoi methods for 3d medial axis approximation. In: Siddiqi, K., Pizer, S.M. (eds.) Medial Representations. Computational Imaging and Vision, vol. 37, pp. 223–239. Springer, Netherlands (2008) 1CrossRefGoogle Scholar
  3. 3.
    Amenta, N., Choi, S., Kolluri, R.K.: The power crust. In: ACM Symposium on Solid Modeling and Applications, pp. 249–266 (2001) 1, 2, 4Google Scholar
  4. 4.
    Valette, S., Chassery, J.-M.: Approximated centroidal voronoi diagrams for uniform polygonal mesh coarsening. Computer Graphics Forum 23(3), 381–389 (2004) 1, 2, 3, 4CrossRefGoogle Scholar
  5. 5.
    Ogniewicz, R., Ilg, M.: Voronoi skeletons: Theory and applications. In: Proc. Computer Vision and Pattern Recognition, pp. 63–69 (1992) 1, 2Google Scholar
  6. 6.
    Au, O.K.-C., Tai, C.-L., Chu, H.-K., Cohen-Or, D., Lee, T.-Y.: Skeleton extraction by mesh contraction. ACM Transactions on Graphics 27, 44:1–44:10 (2008) 2CrossRefGoogle Scholar
  7. 7.
    Bertrand, G., Malandain, G.: A new characterization of three-dimensional simple points. Pattern Recognition Letters 15, 169–175 (1994) 2zbMATHCrossRefGoogle Scholar
  8. 8.
    Ma, W.-C., Wu, F.-C., Ouhyoung, M.: Skeleton extraction of 3d objects with radial basis functions. In: Proc. Shape Modeling International, pp. 207–214 (2003) 2Google Scholar
  9. 9.
    Cornea, N.D., Silver, D., Yuan, X., Balasubramanian, R.: Computing hierarchical curve-skeletons of 3d objects. The Visual Computer 21(11), 945–955 (2005) 2CrossRefGoogle Scholar
  10. 10.
    Hassouna, M.S., Farag, A.A.: Variational curve skeletons using gradient vector flow. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 2257–2274 (2009) 2CrossRefGoogle Scholar
  11. 11.
    Li, X., Woon, T.W., Tan, T.S., Huang, Z.: Decomposing polygon meshes for interactive applications. In: Symposium on Interactive 3D Graphics and Games, pp. 35–42 (2001) 2Google Scholar
  12. 12.
    Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Transactions on Graphics (Proc. SIGGRAPH) 22, 954–961 (2003) 2CrossRefGoogle Scholar
  13. 13.
    Dey, T.K., Sun, J.: Defining and computing curve-skeletons with medial geodesic function. In: Eurographics Symposium on Geometry Processing, pp. 143–152 (2006) 2Google Scholar
  14. 14.
    Cao, J., Tagliasacchi, A., Olson, M., Zhang, H., Su, Z.: Point cloud skeletons via laplacian-based contraction. In: Proc. Shape Modeling International, pp. 187–197 (2010) 2Google Scholar
  15. 15.
    Tagliasacchi, A., Zhang, H., Cohen-Or, D.: Curve skeleton extraction from incomplete point cloud. ACM Transactions on Graphics 28, 71:1–71:9 (2009) 2, 7CrossRefGoogle Scholar
  16. 16.
    Lien, J.-M., Keyser, J., Amato, N.M.: Simultaneous shape decomposition and skeletonization. In: ACM Symposium on Solid and Physical Modeling, pp. 219–228 (2006) 2Google Scholar
  17. 17.
    Kavan, L., Collins, S., Žára, J., O’Sullivan, C.: Skinning with dual quaternions. In: Proc. of Symposium on Interactive 3D Graphics and Games, pp. 39–46 (2007) 7Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Wei Jiang
    • 1
  • Kai Xu
    • 1
  • Zhi-Quan Cheng
    • 1
  • Ralph R. Martin
    • 2
  • Gang Dang
    • 1
  1. 1.School of ComputerNational University of Defense TechnologyP.R. China
  2. 2.School of Computer Science and InformaticsCardiff UniversityWalesUK

Personalised recommendations