Towards an Intelligent Framework to Understand and Feed the Web

  • Anna Fensel
  • Julia Neidhardt
  • Nataliia Pobiedina
  • Dieter Fensel
  • Hannes Werthner
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 127)


The Web is becoming a mirror of the “real” physical world. More and more aspects of our life move to the Web, thus also transforming this world. And the diversity of ways to communicate over the Internet has enormously grown. In this context communicating the right thing at the right time in the right way to the right person has become a remarkable challenge. In this conceptual paper we propose a framework to apply semantic technologies in combination with statistical and learning methods on Web and social media data to build a decision support framework. This framework should help professionals as well as normal users to optimize the spread of their information and the potential impact of this information on the Web.


Social Media Semantics Web Mining Online Marketing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mulpuru, S., Harteveldt, H.H., Roberge, D.: Five retail ecommerce trends to watch in 2011. Forrester Research Report (2011)Google Scholar
  2. 2.
    Hendler, J., Shadbolt, N., Hall, W., Berners-Lee, T., Weitzner, D.: Web science: an interdisciplinary approach to understanding the web. Commun. ACM 51(7), 60–69 (2008)CrossRefGoogle Scholar
  3. 3.
    Kleinberg, J.M., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.S.: The Web as a Graph: Measurements, Models, and Methods. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 1–17. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: Densification and shrinking diameters. ACM TKDD 1(1) (2007)Google Scholar
  5. 5.
    Bringmann, B., Berlingerio, M., Bonchi, F., Gionis, A.: Learning and predicting the evolution of social networks. IEEE Intelligent Systems 25, 26–35 (2010)CrossRefGoogle Scholar
  6. 6.
    Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the dynamics of the news cycle. In: Proc. KDD 2009, pp. 497–506 (2009)Google Scholar
  7. 7.
    Yang, J., Leskovec, J.: Patterns of temporal variation in online media. In: Proc. WSDM 2011, pp. 177–186 (2011)Google Scholar
  8. 8.
    Berendt, B.: Text mining for news and blogs analysis. In: Encyclopedia of Machine Learning, pp. 968–972. Springer (2010)Google Scholar
  9. 9.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamental theory for typed attributed graphs and graph transformation based on adhesive HLR categories. Fundam. Inf. 74, 31–61 (2006)Google Scholar
  10. 10.
    Heckel, R., Lajios, G., Menge, S.: Stochastic graph transformation systems. Fundam. Inf. 74, 63–84 (2006)Google Scholar
  11. 11.
    Jin, Y., Decker, S., Wiederhold, G.: Ontowebber: Model-driven ontology-based web site management. In: Semantic Web Working Symposium, SWWS (2001)Google Scholar
  12. 12.
    Sheth, A., Bertram, C., Avant, D., Hammond, B., Kochut, K., Warke, Y.: Managing semantic content for the web. IEEE Internet Computing 6(4), 80–87 (2002)CrossRefGoogle Scholar
  13. 13.
    Kobilarov, G., Scott, T., Raimond, Y., Oliver, S., Sizemore, C., Smethurst, M., Bizer, C., Lee, R.: Media Meets Semantic Web – How the BBC Uses DBpedia and Linked Data to Make Connections. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 723–737. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z., Velkov, R.: Owlim: A family of scalable semantic repositories. Education 2(1), 33–42 (2011)Google Scholar
  15. 15.
    Kirtis, A.K., Karahan, F.: To be or not to be in social media arena as the most cost-efficient marketing strategy after the global recession. Procedia - Social and Behavioral Sciences 24, 260–268 (2011); The Proceedings of 7th International Strategic Management ConferenceCrossRefGoogle Scholar
  16. 16.
    Mangold, W.G., Faulds, D.J.: Social media: The new hybrid element of the promotion mix. Business Horizons 52(4), 357–365 (2009)CrossRefGoogle Scholar
  17. 17.
    Weinberg, B.D., Pehlivan, E.: Social spending: Managing the social media mix. Business Horizons 54(3), 275–282 (2011)CrossRefGoogle Scholar
  18. 18.
    Fotis, J., Buhalis, D., Rossides, N.: Social media impact on holiday travel planning: The case of the russian and the fsu markets. International Journal of Online Marketing (IJOM) 1, 1–19 (2011)CrossRefGoogle Scholar
  19. 19.
    Piazzi, R., Baggio, R., Neidhardt, J., Werthner, H.: Destinations and the web: a network analysis view. Information Technology & Tourism 13(3) (2011)Google Scholar
  20. 20.
    Bauereiss, T., Leiter, B., Fensel, D.: Effective and efficient online communication. Technical report, STI Innsbruck, Innsbruck (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Anna Fensel
    • 1
  • Julia Neidhardt
    • 2
  • Nataliia Pobiedina
    • 2
  • Dieter Fensel
    • 1
  • Hannes Werthner
    • 2
  1. 1.Semantic Technology Institute (STI) InnsbruckUniversity of InnsbruckInnsbruckAustria
  2. 2.E-Commerce Group, Institute of Software Technology and Interactive SystemsVienna University of TechnologyViennaAustria

Personalised recommendations