DEMO: Managing the Provenance of Crowdsourced Disruption Reports

  • Milan Markovic
  • Peter Edwards
  • David Corsar
  • Jeff Z. Pan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7525)

Abstract

Human computation systems that outsource tasks to the crowd often have to address issues associated with the quality of contributions. We are exploring the potential role of provenance to facilitate processes such as quality assessment within such systems. In this demo we present an application for managing traffic disruption reports generated by the crowd, and outline the technologies used to integrate provenance, linked data, and streams.

References

  1. 1.
    Berners-Lee, T.: Linked data, http://www.w3.org/DesignIssues/LinkedData.html (accessed March 10, 2012)
  2. 2.
    Berners-Lee, T., Fischetti, M.: Weaving the Web: The original design and ultimate destiny of the World Wide Web. Harper Collins, NY (1999)Google Scholar
  3. 3.
    Hendler, J., Berners-Lee, T.: From the semantic web to social machines: A research challenge for AI on the world wide web. Artificial Intelligence 174(2), 156–161 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Sequeda, J.F., Corcho, O.: Linked stream data: A position paper. In: 2nd International Workshop on Semantic Sensor Networks (SSN), Washington, DC, US (2009)Google Scholar
  5. 5.
    von Ahn, L.: Human Computation. PhD thesis, Carnegie Mellon University (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Milan Markovic
    • 1
  • Peter Edwards
    • 1
  • David Corsar
    • 1
  • Jeff Z. Pan
    • 1
  1. 1.Computing Science dot.rural Digital Economy HubUniversity of AberdeenAberdeenUK

Personalised recommendations