A Domain Independent Framework for Extracting Linked Semantic Data from Tables

  • Varish Mulwad
  • Tim Finin
  • Anupam Joshi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7538)


Vast amounts of information is encoded in tables found in documents, on the Web, and in spreadsheets or databases. Integrating or searching over this information benefits from understanding its intended meaning and making it explicit in a semantic representation language like RDF. Most current approaches to generating Semantic Web representations from tables requires human input to create schemas and often results in graphs that do not follow best practices for linked data. Evidence for a table’s meaning can be found in its column headers, cell values, implicit relations between columns, caption and surrounding text but also requires general and domain-specific background knowledge. Approaches that work well for one domain, may not necessarily work well for others. We describe a domain independent framework for interpreting the intended meaning of tables and representing it as Linked Data. At the core of the framework are techniques grounded in graphical models and probabilistic reasoning to infer meaning associated with a table. Using background knowledge from resources in the Linked Open Data cloud, we jointly infer the semantics of column headers, table cell values (e.g., strings and numbers) and relations between columns and represent the inferred meaning as graph of RDF triples. A table’s meaning is thus captured by mapping columns to classes in an appropriate ontology, linking cell values to literal constants, implied measurements, or entities in the linked data cloud (existing or new) and discovering or and identifying relations between columns.


linked data RDF Semantic Web tables entity linking machine learning graphical models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berners-Lee, T.: Linked data (July 2006),
  2. 2.
    Bizer, C.: The emerging web of linked data. IEEE Intelligent Systems 24(5), 87–92 (2009)CrossRefGoogle Scholar
  3. 3.
    Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.: Dbpedia - a crystallization point for the web of data. Journal of Web Semantics 7(3), 154–165 (2009)CrossRefGoogle Scholar
  4. 4.
    Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proc. ACM Int. Conf. on Management of Data, pp. 1247–1250. ACM (2008)Google Scholar
  5. 5.
    Cafarella, M.J., Halevy, A.Y., Wang, Z.D., Wu, E., Zhang, Y.: Webtables: exploring the power of tables on the web. PVLDB 1(1), 538–549 (2008)Google Scholar
  6. 6.
    Cohen, A., Adams, C., Davis, J., Yu, C., Yu, P., Meng, W., Duggan, L., McDonagh, M., Smalheiser, N.: Evidence-based medicine, the essential role of systematic reviews, and the need for automated text mining tools. In: Proc. 1st ACM Int. Health Informatics Symposium, pp. 376–380. ACM (2010)Google Scholar
  7. 7.
    Dataset 1425 - Census of Agriculture Race, Ethnicity and Gender Profile Data (2009),
  8. 8.
    Ding, L., DiFranzo, D., Graves, A., Michaelis, J.R., Li, X., McGuinness, D.L., Hendler, J.A.: Twc data-gov corpus: incrementally generating linked government data from In: Proc 19th Int. Conf. on the World Wide Web, pp. 1383–1386. ACM, New York (2010)CrossRefGoogle Scholar
  9. 9.
    Embley, D.W., Lopresti, D.P., Nagy, G.: Notes on Contemporary Table Recognition. In: Bunke, H., Spitz, A.L. (eds.) DAS 2006. LNCS, vol. 3872, pp. 164–175. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Han, L., Finin, T., McNamee, P., Joshi, A., Yesha, Y.: Improving word similarity by augmenting pmi with estimates of word polysemy. IEEE Transactions on Knowledge and Data Engineering (2012)Google Scholar
  11. 11.
    Han, L., Finin, T., Parr, C., Sachs, J., Joshi, A.: RDF123: From Spreadsheets to RDF. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 451–466. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Hurst, M.: Towards a theory of tables. IJDAR 8(2-3), 123–131 (2006)CrossRefGoogle Scholar
  13. 13.
    Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press (2009)Google Scholar
  14. 14.
    Langegger, A., Wöß, W.: XLWrap – Querying and Integrating Arbitrary Spreadsheets with SPARQL. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 359–374. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Tech. Rep. 8, Soviet Physics Doklady (1966)Google Scholar
  16. 16.
    Limaye, G., Sarawagi, S., Chakrabarti, S.: Annotating and searching web tables using entities, types and relationships. In: Proc. 36th Int. Conf. on Very Large Databases (2010)Google Scholar
  17. 17.
    Miller, G.A.: Wordnet: a lexical database for english. CACM 38, 39–41 (1995)Google Scholar
  18. 18.
    Mulwad, V.: T2LD - An automatic framework for extracting, interpreting and representing tables as Linked Data. Master’s thesis, U. of Maryalnd, Baltimore County (August 2010)Google Scholar
  19. 19.
    Mulwad, V., Finin, T., Syed, Z., Joshi, A.: Using linked data to interpret tables. In: Proc. 1st Int. Workshop on Consuming Linked Data, Shanghai (2010)Google Scholar
  20. 20.
    Polfliet, S., Ichise, R.: Automated mapping generation for converting databases into linked data. In: Proc. 9th Int. Semantic Web Conf. (November 2010)Google Scholar
  21. 21.
    Resnik, P.: Semantic similarity in a taxonomy: An information-based measure and its application to problems of ambiguity in natural language. Journal of Artificial Intelligence Research 11(1), 95–130 (1999)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Sackett, D., Rosenberg, W., Gray, J., Haynes, R., Richardson, W.: Evidence based medicine: what it is and what it isn’t. BMJ 312(7023), 71 (1996)CrossRefGoogle Scholar
  23. 23.
    Sahoo, S.S., Halb, W., Hellmann, S., Idehen, K., Thibodeau Jr., T., Auer, S., Sequeda, J., Ezzat, A.: A survey of current approaches for mapping of relational databases to rdf. Tech. rep., W3C (2009)Google Scholar
  24. 24.
    Salton, G., Mcgill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill, Inc., New York (1986)Google Scholar
  25. 25.
    Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: A Core of Semantic Knowledge. In: 16th Int. World Wide Web Conf. ACM Press, New York (2007)Google Scholar
  26. 26.
    Syed, Z., Finin, T.: Creating and Exploiting a Hybrid Knowledge Base for Linked Data. In: Filipe, J., Fred, A., Sharp, B. (eds.) ICAART 2010. CCIS, vol. 129, pp. 3–21. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  27. 27.
    Syed, Z., Finin, T., Mulwad, V., Joshi, A.: Exploiting a Web of Semantic Data for Interpreting Tables. In: Proc. 2nd Web Science Conf. (April 2010)Google Scholar
  28. 28.
    Vavliakis, K.N., Grollios, T.K., Mitkas, P.A.: Rdote - transforming relational databases into semantic web data. In: Proc. 9th Int. Semantic Web Conf. (November 2010)Google Scholar
  29. 29.
    Venetis, P., Halevy, A., Madhavan, J., Pasca, M., Shen, W., Wu, F., Miao, G., Wu, C.: Recovering semantics of tables on the web. In: Proc. 37th Int. Conf. on Very Large Databases (2011)Google Scholar
  30. 30.
    Wang, J., Shao, B., Wang, H., Zhu, K.Q.: Understanding tables on the web. Tech. rep., Microsoft Research Asia (2011)Google Scholar
  31. 31.
    Wu, W., Li, H., Wang, H., Zhu, K.: Towards a probabilistic taxonomy of many concepts. Tech. rep., Microsoft Research Asia (2011)Google Scholar
  32. 32.
    Zagari, R., Bianchi-Porro, G., Fiocca, R., Gasbarrini, G., Roda, E., Bazzoli, F.: Comparison of 1 and 2 weeks of omeprazole, amoxicillin and clarithromycin treatment for helicobacter pylori eradication: the hyper study. Gut 56(4), 475 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Varish Mulwad
    • 1
  • Tim Finin
    • 1
  • Anupam Joshi
    • 1
  1. 1.Computer Science and Electrical EngineeringUniversity of Maryland, Baltimore CountyBaltimoreUSA

Personalised recommendations