Extending Search to Crowds: A Model-Driven Approach

  • Alessandro Bozzon
  • Marco Brambilla
  • Stefano Ceri
  • Andrea Mauri
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7538)

Abstract

In many settings, the human opinion provided by an expert or knowledgeable user can be more useful than factual information retrieved by a search engine. Search systems do not capture the subjective opinions and recommendations of friends, or fresh, online-provided information that require contextual or domain-specific expertise. Search results obtained from conventional search engines can be complemented by crowdsearch, an online interaction with crowds, selected among friends, experts, or people who are presently at a given location; an interplay between conventional and search-based queries can occur, so that the two search methods can support each other. In this paper, we use a model-driven approach for specifying and implementing a crowdsearch application; in particular we define two models: the “Query Task Model”, representing the meta-model of the query that is submitted to the crowd and the associated answers; and the “User Interaction Model”, showing how the user can interact with the query model to fulfil her needs. Our solution allows for a top-down design approach, from the crowd-search task design, down to the crowd answering system design. Our approach also grants automatic code generation, thus leading to quick prototyping of crowd-search applications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amazon mechanical turk, https://www.mturk.com
  2. 2.
  3. 3.
  4. 4.
    Ariely, D., Gneezy, U., Loewenstein, G., Mazar, N.: Large Stakes and Big Mistakes. Review of Economic Studies 75, 1–19 (2009)Google Scholar
  5. 5.
    Bernstein, M.S., Little, G., Miller, R.C., Hartmann, B., Ackerman, M.S., Karger, D.R., Crowell, D., Panovich, K.: Soylent: a word processor with a crowd inside. In: Proceedings of the 23nd Annual ACM Symposium on User Interface Software and Technology, UIST 2010, pp. 313–322. ACM, New York (2010)CrossRefGoogle Scholar
  6. 6.
    Bozzon, A., Brambilla, M., Ceri, S.: Answering search queries with crowdsearcher. In Proceedings of the World Wide Web Conference (WWW 2012) (page in print, 2012)Google Scholar
  7. 7.
    Brambilla, M., Butti, S., Fraternali, P.: WebRatio BPM: A Tool for Designing and Deploying Business Processes on the Web. In: Benatallah, B., Casati, F., Kappel, G., Rossi, G. (eds.) ICWE 2010. LNCS, vol. 6189, pp. 415–429. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Brambilla, M., Ceri, S., Fraternali, P., Manolescu, I.: Process modeling in web applications. ACM Trans. Softw. Eng. Methodol. 15(4), 360–409 (2006)CrossRefGoogle Scholar
  9. 9.
    Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing data-intensive Web applications. Morgan Kaufmann, USA (2003)Google Scholar
  10. 10.
    Franklin, M.J., Kossmann, D., Kraska, T., Ramesh, S., Xin, R.: CrowdDB: answering queries with crowdsourcing. In: Proceedings of the 2011 International Conference on Management of Data, SIGMOD 2011, pp. 61–72. ACM, New York (2011)Google Scholar
  11. 11.
    Kittur, A., Smus, B., Kraut, R.: CrowdForge: crowdsourcing complex work. In: Proceedings of the 2011 Annual Conference Extended Abstracts on Human Factors in Computing Systems, CHI EA 2011, pp. 1801–1806. ACM, New York (2011)CrossRefGoogle Scholar
  12. 12.
    Kulkarni, A.P., Can, M., Hartmann, B.: Turkomatic: automatic recursive task and workflow design for mechanical turk. In: Proceedings of the 2011 Annual Conference Extended Abstracts on Human Factors in Computing Systems, CHI EA 2011, pp. 2053–2058. ACM, New York (2011)CrossRefGoogle Scholar
  13. 13.
    Mason, W., Watts, D.J.: Financial incentives and the ”performance of crowds”. In: Proceedings of the ACM SIGKDD Workshop on Human Computation, HCOMP 2009, pp. 77–85. ACM, New York (2009)CrossRefGoogle Scholar
  14. 14.
    Parameswaran, A., Polyzotis, N.: Answering queries using humans, algorithms and databases. In: Conference on Inovative Data Systems Research (CIDR 2011). Stanford InfoLab (January 2011)Google Scholar
  15. 15.
    Yan, T., Kumar, V., Ganesan, D.: Crowdsearch: exploiting crowds for accurate real-time image search on mobile phones. In: Proceedings of the 8th International Conference on Mobile Systems, Applications, and Services, MobiSys 2010, pp. 77–90. ACM, New York (2010)CrossRefGoogle Scholar
  16. 16.
    Garlandini, S., Fabrikant, S.I.: Evaluating the Effectiveness and Efficiency of Visual Variables for Geographic Information Visualization. In: Hornsby, K.S., Claramunt, C., Denis, M., Ligozat, G. (eds.) COSIT 2009. LNCS, vol. 5756, pp. 195–211. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Fox, E.A., Hix, D., Nowell, L.T., Brueni, D.J., Wake, W.C., Heath, L.S., Rao, D.: Users, user interfaces, and objects: Envision, a digital library. Journal of the American Society for Information Science 44(8), 480–491 (1993)CrossRefGoogle Scholar
  18. 18.
    Takatsuka, M., Gahegan, M.: GeoVISTA Studio: A Codeless Visual Programming Environment For Geoscientific Data Analysis and Visualization. In: Computational Geoscience, vol. 28, pp. 1131–1144 (2002)Google Scholar
  19. 19.
    Wattenberg, M.: Visual exploration of multivariate graphs. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems - CHI 2006, pp. 811–819. ACM, New York (2006)CrossRefGoogle Scholar
  20. 20.
    Aula, A., et al.: How does search behaviour change as search becomes more difficult? In: Proc. 28th International Conference on Human Factors in Computing Systems, HCI, Atlanta, GA, USA, pp. 35–44 (2010)Google Scholar
  21. 21.
    Doan, A., Ramakrishnan, R., Halevy, A.: Crowdsourcing Systems on the World-Wide Web. Communications of the ACM (April 2011)Google Scholar
  22. 22.
    Yan, T., Kumar, V., Ganesan, D.: CrowdSearch: exploiting crowds for accurate real-time image search. In: Proc. 8th Int. Conference on Mobile Systems, Applications, and Services – MOBISYS, S. Francisco, CA, pp. 77–90 (2010)Google Scholar
  23. 23.
    Franklin, M.J., et al.: CrowdDB: answering queries with crowdsourcing. In: Proceedings of the 2011 International Conference on Management of Data (SIGMOD 2011), pp. 61–72. ACM, New York (2011)Google Scholar
  24. 24.
    Marcus, A., et al.: Crowdsourced Databases: Query Processing with People. In: Conference on Innovative Data Systems Research, Asilomar, CA, pp. 211–214 (2011)Google Scholar
  25. 25.
    Parameswaran, A., Polyzotis, N.: Answering Queries using Databases, Humans and Algorithms. In: Conference on Innovative Data Systems Research 2011, Asilomar, CA, pp. 160–166 (2011)Google Scholar
  26. 26.
    Baeza-Yates, R., Raghavan, P.: Next Generation Web Search. In: Ceri, S., Brambilla, M. (eds.) Search Computing. LNCS, vol. 5950, pp. 11–23. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Marchionini, G.: Exploratory Search: from Finding to Understanding. Communications of the ACM, 41–46 (2006)Google Scholar
  28. 28.
    Bozzon, A., Brambilla, M., Ceri, S., Fraternali, P.: Liquid Query: Multi-Domain Exploratory Search on the Web. In: WWW 2010, Raleigh, USA, pp. 161–170. ACM, New York (2010)Google Scholar
  29. 29.
    Bozzon, A., et al.: Exploratory Search in Multi-Domain Information Spaces with Liquid Query. In: Proc. WWW 2011 - Demo, Hyderabad, India, pp. 189–192. ACM, New York (2011)Google Scholar
  30. 30.
    Marcus, A., Wu, E., Karger, D., Madden, S., Miller, R.: Humanpowered Sorts and Joins. PVLDB 5(1), 13–24 (2011)Google Scholar
  31. 31.
    Kumar, A., Lease, M.: Modeling Annotator Accuracies for Supervised Learning. In: Proc. Crowdsourcing for Search and Data Mining Workshop – CSDM, Hong-Kong, China (2011)Google Scholar
  32. 32.
    Bernstein, M.S., et al.: Soylent: a word processor with a crowd inside. In: Proceedings of the 23nd Annual ACM Symposium on User Interface Software and Technology, pp. 313–322. ACM, New YorkGoogle Scholar
  33. 33.
    Kulkarni, A.P., Can, M., Hartmann, B.: Turkomatic: Automatic Recursive Task and Workflow Design for Mechanical Turk. In: Proc. Extended Abstracts on Human Factors in Computing Systems - CHI EA, Vancouver, CA, pp. 2053–2058 (2011)Google Scholar
  34. 34.
    Mason, W.A., Watts, D.J.: Financial Incentives and the ”Performance of Crowds”. In: KDD Workshop on Human Computation, Paris, France, pp. 77–85 (2009)Google Scholar
  35. 35.
    Ariely, D., et al.: Large Stakes and Big Mistakes. Review of Economic Studies 76(2), 451–469 (2009)MATHCrossRefGoogle Scholar
  36. 36.
    Chilton, et al.: Task search in a human computation market. In: ACM SIGKDD Workshop on Human Computation (HCOMP 2010), pp. 1–9. ACM Press, New York (2010)CrossRefGoogle Scholar
  37. 37.
    Morris, M.R.: A survey of Collaborative Web Search practices. In: Proc. SIGCHI Conference on Human Factors in Computing Systems, Florence, pp. 1657–1666 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alessandro Bozzon
    • 1
  • Marco Brambilla
    • 1
  • Stefano Ceri
    • 1
  • Andrea Mauri
    • 1
  1. 1.Dipartimento di Elettronica e InformazionePolitecnico di MilanoItaly

Personalised recommendations