App-Free Zone: Paper Maps as Alternative to Electronic Indoor Navigation Aids and Their Empirical Evaluation with Large User Bases

  • Alexandra Lorenz
  • Cornelia Thierbach
  • Nina Baur
  • Thomas H. Kolbe
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)


Nowadays, mobile devices are widely used as navigation aids, e.g., for car navigation. Their greatest advantage is the ability of automatic position tracking. In indoor environments, this feature is often not available, since indoor localization techniques are not ready for the mass-market yet. What remains is a small display with limited space for route visualizations. In contrast, the variable size of paper allows for the representation of additional context information as a means for spatial understanding and orientation in space, rendering it a valuable alternative presentation medium for indoor navigation aids. Independent of the medium used, provided visualizations must meet specific cartographic requirements like clarity, comprehensibility, and expedience. Within a co-operation between geoinformation science and sociology, we develop and investigate cartographic methods for effective route guidance in indoor environments. Our evaluation base comes from user studies conducted with more than 3,000 visitors, of both genders and aged between 4 and 78 years. These user studies were collected during the “Long Nights of Science” in Berlin in 2009, 2010, 2011, and 2012. We used paper as the presentation medium for our experiments, not only for practical reasons but also because we want to confront our participants with a solution which does not align to the current trend. Within this article we put special focus on media characteristics and users’ media preferences. Therefore, we asked our participants about their opinion on the provided paper maps in contrast to mobile solutions. Based on their answers, we could derive media characteristics relevant from a user’s perspective, as well as the affinities of different user groups. One astonishing outcome was that 11–15 year-old teenagers indicate a much higher tendency towards paper maps than towards smartphone apps.


Indoor navigation Map design Paper map Social experiment 


  1. Baur N (2012) Mittelwertvergleiche und Varianzanalyse. Datenanalyse mit SPSS für Fortgeschrittene 2: Multivariate Verfahren für Querschnittsdaten (ed Fromm S) Vs Verlag für Sozialwissenschaften, pp 12–52Google Scholar
  2. Becker T, Nagel C, Kolbe TH (2009) A multilayered space-event model for navigation in indoor spaces. In: Lee J, Zlatanova S (eds) 3D Geo-information sciences. Springer, Heidelberg, pp 61–77CrossRefGoogle Scholar
  3. Dillemuth JA (2009) Navigation tasks with small-display maps: the sum of the parts does not equal the whole. Cartographica Int J Geogr Inf Geovisualization 44(3):187–200CrossRefGoogle Scholar
  4. FROMM S (2010) Multiple lineare regressionsanalyse. Datenanalyse mit SPSS für fortgeschrittene 2: multivariate verfahren für querschnittsdaten (ed Fromm S) Vs Verlag für Sozialwissenschaften, pp 83–106Google Scholar
  5. Gartner G, Frank AU, Retscher G (2004) Pedestrian navigation system in mixed indoor/outdoor environment: the NAVIO project. In: Schrenk M (ed) Proceedings of the CORP 2004 and Geomultimedia04, Vienna, pp 165–171Google Scholar
  6. Gartner G, Hiller W (2008) Impact of restricted display size on spatial knowledge acquisition in the context of pedestrian navigation. In: Gartner GF, Rehrl K (eds) Location based services and telecartography: from sensor fusion to ubiquitous LBS. Springer, London, pp 155–166Google Scholar
  7. Gibson JJ (1979) The ecological approach to visual perception. Houghton Mifflin, BostonGoogle Scholar
  8. Gröger G, Kolbe TH, Czerwinski A, Nagel C (2008) OpenGIS city geography markup language (CityGML) encoding standard (OGC 08-007r1)Google Scholar
  9. Hide C, Botterill T (2010) Development of an integrated IMU, image recognition and orientation sensor for pedestrian navigation. In: Proceedings of the 2010 international technical meeting of the institute of navigation, San Diego, CA, pp 1–9Google Scholar
  10. Ishikawa T, Fujiwara H, Imai O, Okabe A (2008) Wayfinding with a GPS-based mobile navigation system: a comparison with maps and direct experience. J Environ Psychol 28(1):74–82CrossRefGoogle Scholar
  11. ISO (2005) ISO/PAS 16739:2005, Industry foundation classesGoogle Scholar
  12. Knoblauch H (2005) Focused ethnography. Forum qualitative sozialforschung/forum: qualitative social research, 6 (3)Google Scholar
  13. Kolbe TH (2003) Augmented Videos and Panoramas for Pedestrian Navigation. In: Gartner G (ed) Proceedings of the 2nd symposium on location based services and telecartography 2004, pp 45–52Google Scholar
  14. Krüger A, Butz A, Müller C, Stahl C, Wasinger R, Steinberg K-E, Dirschl A (2004) The connected user interface: realizing a personal situated navigation service. In: Proceedings of the 9th international conference on intelligent user interfaces, ACM, New York, USA, pp 161–168Google Scholar
  15. Lamnek S (2005) Qualitative sozialforschung: lehrbuch, 4th edn. Beltz Verlag, BaselGoogle Scholar
  16. Lorenz A, Thierbach C (2012) Bewusst wo? Gewusst wie! entwicklung innovativer kartographischer methoden zur effektiven Navigation in innenräumen. In: Weisbrich S, Kaden R (eds) Entwicklerforum geodäsie und geoinformationstechnik 2011. Shaker Verlag, BerlinGoogle Scholar
  17. Lorenz A, Thierbach C, Kolbe TH, Baur N (2010) Untersuchung der effizienz und akzeptanz von 2D- und 3D-Kartenvarianten für die innenraumnavigation. In: Kohlhofer G, Franzen M (eds) Vorträge Dreiländertagung OVG, DGPF und SGPF - 30. Wissenschaftlich-Technische Jahrestagung der DGPF, Vienna, pp 342–355Google Scholar
  18. May AJ, Ross T, Bayer SH, Tarkiainen MJ (2003) Pedestrian navigation aids: information requirements and design implications. Pers Ubiquitous Comput 7:331–338CrossRefGoogle Scholar
  19. Müller HJ, Schöning J, Krüger A (2006) Mobile map interaction: evaluation in an indoor Scenario. Workshop on mobile and embedded interactive systems, Informatik 2006 Gesellschaft für Informatik e.VGoogle Scholar
  20. Nagel C, Becker T, Kaden R, Li K-J, Lee J, Kolbe TH (2010) Requirements and space-event modeling for indoor navigation: discussion paper (OGC 10-191r1)Google Scholar
  21. Nossum AS (2011) IndoorTubes a novel design for indoor maps. Cartography Geogr Inform Sci 38(2):192–200CrossRefGoogle Scholar
  22. Paelke V, Sester M (2010) Augmented paper maps: exploring the design space of a mixed reality system. ISPRS J Photogrammetry Remote Sens 65(3):256–265CrossRefGoogle Scholar
  23. Pauschert C, Riplinger E, Tiede C, Coors V (2011) Benefits through linking of analogue and digital maps. In: Ruas A (ed) Advances in cartography and GIScience: selection from ICC 2011. Springer, New York, pp 205–217Google Scholar
  24. Puikkonen A, Sarjanoja A-H, Haveri M, Huhtala J, Häkkilä J (2009) Towards designing better maps for indoor navigation: experiences from a case study. In: Proceedings of the 8th international conference on mobile and ubiquitous multimedia, ACM, New York, USA, pp 16:1–16:4Google Scholar
  25. Rehrl K, Göll N, Leitinger S, Bruntsch S, Mentz H-J (2007) Smartphone-based information and navigation aids for public transport travellers. In: Gartner GF, Cartwright W, Peterson MP (eds) Location based services and telecartography. Springer, London, pp 525–544CrossRefGoogle Scholar
  26. Reitmayr G, Schmalstieg D (2003) Collaborative augmented reality for outdoor navigation and information browsing. In: Gartner G (ed) Proceedings of the 2nd symposium on location based services and telecartography 2004, pp 31–41Google Scholar
  27. Rukzio E, Müller M, Hardy R (2009) Design, implementation and evaluation of a novel public display for pedestrian navigation: the rotating compass. Proceedings of the 27th international conference on human factors in computing systems, ACM, New York, USA, pp 113–122Google Scholar
  28. Thierbach C (2011) Raumorientierung und interaktion in gebäuden. Diploma thesis, Institute for Sociology, Technische Universität BerlinGoogle Scholar
  29. Vinson NG (1999) Design guidelines for landmarks to support navigation in virtual environments. In Williams MG (ed) Human factors in computing systems: Chi 99 conference proceedings the CHI is the limit; conference on human factors in computing systems, association for computing machinery. Addison-Wesley, New York, Harlow, pp 278–285Google Scholar
  30. Wirola L, Laine TA, Syrjärinne J (2010) Mass-market requirements for indoor positioning and indoor navigation. In: International conference on indoor positioning and indoor navigation (IPIN), pp 1–7Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alexandra Lorenz
    • 1
  • Cornelia Thierbach
    • 2
  • Nina Baur
    • 2
  • Thomas H. Kolbe
    • 1
  1. 1.Department of Geodesy and Geoinformation ScienceTechnische Universität BerlinBerlinGermany
  2. 2.Department of SociologyTechnische Universität BerlinBerlinGermany

Personalised recommendations