A History of Flips in Combinatorial Triangulations

  • Prosenjit Bose
  • Sander Verdonschot
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7579)

Abstract

Given two combinatorial triangulations, how many edge flips are necessary and sufficient to convert one into the other? This question has occupied researchers for over 75 years. We provide a comprehensive survey, including full proofs, of the various attempts to answer it.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aichholzer, O., Huemer, C., Krasser, H.: Triangulations without pointed spanning trees. Comput. Geom. 40(1), 79–83 (2008)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bose, P., Hurtado, F.: Flips in planar graphs. Comput. Geom. 42(1), 60–80 (2009)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bose, P., Jansens, D., van Renssen, A., Saumell, M., Verdonschot, S.: Making triangulations 4-connected using flips. In: Proceedings of the 23rd Canadian Conference on Computational Geometry, pp. 241–247 (2011); A full version of this paper can be found at arXiv:1110.6473Google Scholar
  4. 4.
    Gao, Z., Urrutia, J., Wang, J.: Diagonal flips in labelled planar triangulations. Graphs Combin. 17(4), 647–657 (2001)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Komuro, H.: The diagonal flips of triangulations on the sphere. Yokohama Math. J. 44(2), 115–122 (1997)MathSciNetMATHGoogle Scholar
  6. 6.
    Mori, R., Nakamoto, A., Ota, K.: Diagonal flips in Hamiltonian triangulations on the sphere. Graphs Combin. 19(3), 413–418 (2003)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Negami, S., Nakamoto, A.: Diagonal transformations of graphs on closed surfaces. Sci. Rep. Yokohama Nat. Univ. Sect. I Math. Phys. Chem. 40, 71–97 (1993)MathSciNetGoogle Scholar
  8. 8.
    Wagner, K.: Bemerkungen zum vierfarbenproblem. Jahresber. Dtsch. Math.-Ver. 46, 26–32 (1936)MATHGoogle Scholar
  9. 9.
    Whitney, H.: A theorem on graphs. Ann. of Math. (2) 32(2), 378–390 (1931)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Prosenjit Bose
    • 1
  • Sander Verdonschot
    • 1
  1. 1.School of Computer ScienceCarleton UniversityCanada

Personalised recommendations