Computational Geometry pp 126-137

Part of the Lecture Notes in Computer Science book series (LNCS, volume 7579) | Cite as

Locating a Service Facility and a Rapid Transit Line

  • José Miguel Díaz-Báñez
  • Matias Korman
  • Pablo Pérez-Lantero
  • Inmaculada Ventura

Abstract

In this paper we study a facility location problem in the plane in which a single point (facility) and a rapid transit line (highway) are simultaneously located in order to minimize the total travel time of the clients to the facility, using the L1 or Manhattan metric. The rapid transit line is represented by a line segment with fixed length and arbitrary orientation. The highway is an alternative transportation system that can be used by the clients to reduce their travel time to the facility. This problem was introduced by Espejo and Rodríguez-Chía in [8]. They gave both a characterization of the optimal solutions and an algorithm running in O(n3logn) time, where n represents the number of clients. In this paper we show that the Espejo and Rodríguez-Chía’s algorithm does not always work correctly. At the same time, we provide a proper characterization of the solutions with a simpler proof and give an algorithm solving the problem in O(n3) time.

Keywords

Geometric optimization Facility location Time distance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Palop, B., Sacristán, V.: Voronoi diagram for services neighboring a highway. Information Processing Letters 86, 283–288 (2003)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Ahn, H.-K., Alt, H., Asano, T., Bae, S.W., Brass, P., Cheong, O., Knauer, C., Na, H.-S., Shin, C.-S., Wolff, A.: Constructing optimal highways. In: Proceedings of the 13th Computing: The Australasian Theory Symposium (CATS 2007), pp. 7–14 (2007)Google Scholar
  3. 3.
    Aichholzer, O., Aurenhammer, F., Palop, B.: Quickest paths, straight skeletons, and the city Voronoi diagram. Discrete & Computational Geometry 31, 17–35 (2004)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Aloupis, G., Cardinal, J., Collette, S., Hurtado, F., Langerman, S., O’Rourke, J., Palop, B.: Highway hull revisited. Computational Geometry: Theory and Applications 43, 115–130 (2010)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bae, S.W., Korman, M., Tokuyama, T.: All Farthest Neighbors in the Presence of Highways and Obstacles. In: Das, S., Uehara, R. (eds.) WALCOM 2009. LNCS, vol. 5431, pp. 71–82. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Cardinal, J., Collette, S., Hurtado, F., Langerman, S., Palop, B.: Optimal location of transportation devices. Computational Geometry: Theory and Applications 41, 219–229 (2008)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Díaz-Báñez, J.-M., Korman, M., Pérez-Lantero, P., Ventura, I.: Locating a service facility and a rapid transit line. CoRR, abs/1104.0753 (2011)Google Scholar
  8. 8.
    Espejo, I., Rodríguez-Chía, A.M.: Simultaneous location of a service facility and a rapid transit line. Computers and Operations Research 38, 525–538 (2011)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Korman, M., Tokuyama, T.: Optimal Insertion of a Segment Highway in a City Metric. In: Hu, X., Wang, J. (eds.) COCOON 2008. LNCS, vol. 5092, pp. 611–620. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • José Miguel Díaz-Báñez
    • 1
  • Matias Korman
    • 2
  • Pablo Pérez-Lantero
    • 3
  • Inmaculada Ventura
    • 1
  1. 1.Departamento de Matemática Aplicada IIUniversidad de SevillaSpain
  2. 2.Universitat Politècnica de Catalunya (UPC)BarcelonaSpain
  3. 3.Escuela de Ingeniería Civil en InformáticaUniversidad de ValparaísoChile

Personalised recommendations