Specification and Quantitative Analysis of Probabilistic Cloud Deployment Patterns

  • Kenneth Johnson
  • Simon Reed
  • Radu Calinescu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7261)


Cloud computing is a new technological paradigm offering computing infrastructure, software and platforms as a pay-as-you-go, subscription-based service. Many potential customers of cloud services require essential cost assessments to be undertaken before transitioning to the cloud. Current assessment techniques are imprecise as they rely on simplified specifications of resource requirements that fail to account for probabilistic variations in usage. In this paper, we address these problems and propose a new probabilistic pattern modelling (PPM) approach to cloud costing and resource usage verification. Our approach is based on a concise expression of probabilistic resource usage patterns translated to Markov decision processes (MDPs). Key costing and usage queries are identified and expressed in a probabilistic variant of temporal logic and calculated to a high degree of precision using quantitative verification techniques. The PPM cost assessment approach has been implemented as a Java library and validated with a case study and scalability experiments.


Cloud computing formal verification methods formal specification languages formal modelling and specification probabilistic model checking Markov processes costing analysis resource usage patterns 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing. Commun. ACM 53, 50–58 (2010)CrossRefGoogle Scholar
  2. 2.
    Buyya, R., Ranjan, R., Calheiros, R.: Modeling and simulation of scalable cloud computing environments and the CloudSim toolkit: Challenges and opportunities. In: Intl. Conf. on High Performance Computing Simulation, pp. 1–11 (2009)Google Scholar
  3. 3.
    Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.: CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Software: Practice and Experience 41(1), 23–50 (2011)CrossRefGoogle Scholar
  4. 4.
    Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., Tamburrelli, G.: Dynamic QoS management and optimization in service-based systems. IEEE Transactions on Software Engineering 37, 387–409 (2011)CrossRefGoogle Scholar
  5. 5.
    Calinescu, R., Johnson, K., Rafiq, Y.: Using observation ageing to improve Markovian model learning in QoS engineering. In: Proc. of the 2nd Joint Intl. Conf. on Performance Engineering, pp. 505–510. ACM (2011)Google Scholar
  6. 6.
    Calinescu, R., Kikuchi, S.: Formal Methods @ Runtime. In: Calinescu, R., Jackson, E. (eds.) Monterey Workshop 2010. LNCS, vol. 6662, pp. 122–135. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Deelman, E., Singh, G., Livny, M., Berriman, B., Good, J.: The cost of doing science on the cloud: the Montage example. In: Proc. of the 2008 ACM/IEEE Conf. on Supercomputing, pp. 50:1–50:12 (2008)Google Scholar
  8. 8.
    Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects of Computing 6, 512–535 (1994)zbMATHCrossRefGoogle Scholar
  9. 9.
    Jeannet, B., D’Argenio, P., Larsen, K.: Rapture: a tool for verifying Markov decision processes. In: Cerna, I. (ed.) Proc. Tools Day, Affiliated to 13th Int. Conf. Concurrency Theory (CONCUR 2002). Technical Report FIMU-RS-2002-05, Faculty of Informatics, Masaryk University, pp. 84–98 (2002)Google Scholar
  10. 10.
    Jensen, M., Schwenk, J., Gruschka, N., Iacono, L.: On technical security issues in cloud computing. In: IEEE Intl. Conf. on Cloud Computing, pp. 109–116. IEEE Computer Society (2009)Google Scholar
  11. 11.
    Joint, A., Baker, E., Eccles, E.: Hey, you, get off of that cloud? Computer Law & Security Review 25(3), 270–274 (2009)CrossRefGoogle Scholar
  12. 12.
    Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and outs of the probabilistic model checker MRMC. In: Proc. of the 6th Intl. Conf. on the Quantitative Evaluation of Systems, QEST 2009, pp. 167–176. IEEE Computer Society Press, Los Alamitos (2009)CrossRefGoogle Scholar
  13. 13.
    Khajeh-Hosseini, A., Greenwood, D., Smith, J.W., Sommerville, I.: The cloud adoption toolkit: supporting cloud adoption decisions in the enterprise. Software: Practice and Experience (2011)Google Scholar
  14. 14.
    Khajeh-Hosseini, A., Greenwood, D., Sommerville, I.: Cloud migration: A case study of migrating an enterprise IT system to IaaS. In: IEEE 3rd Intl. Conf. on Cloud Computing, pp. 450–457. IEEE Computer Society (2010)Google Scholar
  15. 15.
    Kikuchi, S., Matsumoto, Y.: Performance modeling of concurrent live migration operations in cloud computing systems using PRISM probabilistic model checker. In: Proc. 4th Intl. Conf. on Cloud Computing (2011)Google Scholar
  16. 16.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic Symbolic Model Checker. In: Field, T., Harrison, P., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002)Google Scholar
  17. 17.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Kwiatkowska, M.: Quantitative verification: models techniques and tools. In: Proceedings of the the 6th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering, pp. 449–458 (2007)Google Scholar
  19. 19.
    Rutten, J., Kwiatkowska, M., Norman, G., Parker, D.: Mathematical Techniques for Analyzing Concurrent and Probabilistic Systems. In: Panangaden, P., van Breugel, F. (eds.) CRM Monograph Series, vol. 23. AMS (2004)Google Scholar
  20. 20.
    Vaquero, L.M., Rodero-Merino, L., Caceres, J., Lindner, M.: A break in the clouds: towards a cloud definition. SIGCOMM Comput. Commun. Rev. 39, 50–55 (2008)CrossRefGoogle Scholar
  21. 21.
    Walker, E., Brisken, W., Romney, J.: To lease or not to lease from storage clouds. Computer 43(4), 44–50 (2010)CrossRefGoogle Scholar
  22. 22.
    Youseff, L., Butrico, M., Da Silva, D.: Toward a unified ontology of cloud computing. In: Grid Computing Environments Workshop (GCE 2008), pp. 1–10 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Kenneth Johnson
    • 1
  • Simon Reed
    • 1
  • Radu Calinescu
    • 1
  1. 1.Computer Science Research GroupAston UniversityBirminghamUK

Personalised recommendations