Using Wiimote for 2D and 3D Pointing Tasks: Gesture Performance Evaluation

  • Georgios Kouroupetroglou
  • Alexandros Pino
  • Athanasios Balmpakakis
  • Dimitrios Chalastanis
  • Vasileios Golematis
  • Nikolaos Ioannou
  • Ioannis Koutsoumpas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7206)


We present two studies to comparatively evaluate the performance of gesture-based 2D and 3D pointing tasks. In both of them, a Wiimote controller and a standard mouse were used by six participants. For the 3D experiments we introduce a novel configuration analogous to the ISO 9241-9 standard methodology. We examine the pointing devices’ conformance to Fitts’ law and we measure eight extra parameters that describe more accurately the cursor movement trajectory. For the 2D tasks using Wiimote, Throughput is 41,2% lower than using the mouse, target re-entry is almost the same, and missed clicks count is three times higher. For the 3D tasks using Wiimote, Throughput is 56,1% lower than using the mouse, target re-entry is increased by almost 50%, and missed clicks count is sixteen times higher.

Fitts’ law, 3D pointing, Gesture User Interface, Wiimote


Gesture Recognition Dynamic Time Warping Dynamic Gesture Gesture Recognition System Slow Feature Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hofmann, F.G., Heyer, P., Hommel, G.: Velocity Profile Based Recognition of Dynamic Gestures with Discrete Hidden Markov Models. In: Wachsmuth, I., Fröhlich, M. (eds.) GW 1997. LNCS (LNAI), vol. 1371, pp. 81–95. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Mantyjarvi, J., Kela, J., Korpipaa, P., Kallio, S.: Enabling fast and effortless customization in accelerometer based gesture interaction. In: MUM 2004, pp. 25–31. ACM Press (2004)Google Scholar
  3. 3.
    Mantyjarvi, J., Kela, J., Korpipaa, P., Kallio, S., Savino, G., Jozzo, L., Marca, D.: Accelerometer-based gesture control for a design environment. Personal Ubiquitous Computing 10(5), 285–299 (2006)CrossRefGoogle Scholar
  4. 4.
    Kratz, S., Rohs, M.: A $3 Gesture Recognizer: Simple Gesture Recognition for Devices Equipped with 3D Acceleration Sensors. In: International Conference on Intelligent User Interfaces (IUI 2010), pp. 341–344. ACM Press (2010)Google Scholar
  5. 5.
    Schlomer, T., Poppinga, B., Henze, N., Boll, S.: Gesture recognition with a Wii controller. In: TEI 2008 - Tangible and Embedded Interaction Conference, pp. 11–14. ACM Press (2008)Google Scholar
  6. 6.
    Koch, P., Konen, W., Hein, K.: Gesture Recognition on Few Training Data using Slow Feature Analysis and Parametric Bootstrap. In: International Joint Conference on Neural Networks, Barcelona, pp. 1–8 (2010)Google Scholar
  7. 7.
    Lee, J.C.: Hacking the Nintendo Wii remote. IEEE Pervasive Computing 7(3), 39–45 (2008)CrossRefGoogle Scholar
  8. 8.
    Rehm, M., Bee, N., Andre, E.: Wave Like an Egyptian - Accelerometer Based Gesture Recognition for Culture Specific Interactions. In: HCI 2008: Culture, Creativity, Interaction (2008)Google Scholar
  9. 9.
    Jones, E., Alexander, J., Andreou, A., Irani, P., Subramanian, S.: GesText: Accelerometer-Based Gestural Text-Entry Systems. In: CHI 2010, Atlanta, Georgia, USA, April 10-15 (2010)Google Scholar
  10. 10.
    Leong, T., Lai, J., Pong, P., Panza, J., Hong, J.: Wii Want to Write: An Accelerometer Based Gesture Recognition System. In: Intern. Conf. on Recent and Emerging Advanced Technologies in Engineering, Malaysia, pp. 4–7 (2009)Google Scholar
  11. 11.
    Malmestig, P., Sundberg, S.: SignWiiver - implementation of sign language technology. University of Göteborg (2008),
  12. 12.
    Fitts, P.M.: The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology 47(6), 381–391 (1954); reprinted in Journal of Experimental Psychology: General 121(3), 262–269 (1992)CrossRefGoogle Scholar
  13. 13.
    Murata, A., Iwase, H.: Extending Fitts’ law to a three-dimensional pointing task. Human Movement Science 20, 791–805 (2001)CrossRefGoogle Scholar
  14. 14.
    Chen, R., Wu, F.-G., Chen, K.: Extension of Fitts’ Law for the design of the gesture pointing interaction. In: 3th World Conference on Design Research - IASDR 2009, Korea, pp. 4611–4620 (2009)Google Scholar
  15. 15.
    Foehrenbach, S., König, W., Gerken, J., Reiterer, H.: Natural Interaction with Hand Gestures and Tactile Feedback for large, high-res Displays. In: MITH 2008: Workshop on Multimodal Interaction Through Haptic Feedback, Napoli, Italy (2008)Google Scholar
  16. 16.
    Fikkert, W., van der Vet, P., Nijholt, A.: Hand-held device evaluation in gesture interfaces. In: 8th International Gesture Workshop - GW 2009 (2009)Google Scholar
  17. 17.
    McArthur, V., Castellucci, S.J., MacKenzie, I.S.: An empirical comparison of “Wiimote” gun attachments for pointing tasks. In: ACM SIGCHI Symposium on Engineering Interactive Computing Systems – EICS 2009, pp. 203–209. ACM, New York (2009)CrossRefGoogle Scholar
  18. 18.
    MacKenzie, I.S.: Movement time prediction in human-computer interfaces. In: Baecker, R.M., Buxton, W.A.S., Grudin, J., Greenberg, S. (eds.) Readings in Human-Computer Interaction, 2nd edn., pp. 483–493. Kaufmann, San Francisco (1995)Google Scholar
  19. 19.
    ISO: Ergonomic requirements for office work with visual display terminals (vdts)-part 9: Req. for non-keyboard input devices. Technical Report 9241-9 (2000) Google Scholar
  20. 20.
    Soukoreff, W., MacKenzie, S.: Towards a standard for pointing device evaluation, perspectives on 27 years of Fitts’ law research in HCI. International Journal of Human-Computer Studies 61(6), 751–789 (2004)CrossRefGoogle Scholar
  21. 21.
    MacKenzie, I.S., Kauppinen, T., Silfverberg, M.: Accuracy measures for evaluating computer pointing devices. In: ACM Conference on Human Factors in Computing Systems – CHI 2001, pp. 9–16. ACM, New York (2001)CrossRefGoogle Scholar
  22. 22.
    Fitts, P.M., Peterson, J.R.: Information capacity of discrete motor responses. J. Exp. Psychology 67, 103–112 (1964)CrossRefGoogle Scholar
  23. 23.
    Pino, A., Kalogeros, E., Salemis, I., Kouroupetroglou, G.: Brain Computer Interface Cursor Measures for Motion-impaired and Able-bodied Users. In: 10th International Conference on Human-Computer Interaction, vol. 4, pp. 1462–1466. Lawrence Erlbaum Associates, Inc., Mahwah (2003)Google Scholar
  24. 24.
    The LabVIEW Environment,
  25. 25.
    Kiefer, C., Collins, N., Fitzpatrick, G.: Evaluating the Wiimote as a Musical Controller. In: International Computer Music Conference - ICMC 2008 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Georgios Kouroupetroglou
    • 1
    • 2
  • Alexandros Pino
    • 2
  • Athanasios Balmpakakis
    • 1
  • Dimitrios Chalastanis
    • 1
  • Vasileios Golematis
    • 1
  • Nikolaos Ioannou
    • 1
  • Ioannis Koutsoumpas
    • 1
  1. 1.Department of Informatics and TelecommunicationsNational and Kapodistrian University of AthensAthensGreece
  2. 2.Accessibility Unit for Students with DisabilitiesNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations