AGG 2.0 – New Features for Specifying and Analyzing Algebraic Graph Transformations

  • Olga Runge
  • Claudia Ermel
  • Gabriele Taentzer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7233)


The integrated development environment AGG supports the specification of algebraic graph transformation systems based on attributed, typed graphs with node type inheritance, graph rules with application conditions, and graph constraints. It offers several analysis techniques for graph transformation systems including graph parsing, consistency checking of graphs as well as conflict and dependency detection in transformations by critical pair analysis of graph rules, an important instrument to support the confluence check of graph transformation systems. AGG 2.0 includes various new features added over the past two years. It supports the specification of complex control structures for rule application comprising the definition of control and object flow for rule sequences and nested application conditions. Furthermore, new possibilities for constructing rules from existing ones (e.g., inverse, minimal, amalgamated, and concurrent rules) and for more flexible usability of critical pair analyses have been realized.


graph transformation tool AGG 2.0 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced Concepts and Tools for In-Place EMF Model Transformations. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp. 121–135. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Biermann, E., Ehrig, K., Ermel, C., Hurrelmann, J.: Generation of simulation views for domain specific modeling languages based on the Eclipse Modeling Framework. In: Automated Software Engineering (ASE 2009), pp. 625–629. IEEE Press (2009)Google Scholar
  3. 3.
    Budapest University of Technology and Economics: Visual Modeling and Transformation System (VMTS) (2010),
  4. 4.
    Eclipse Consortium: VIATRA2 (Visual Automated Model Transformations) Framework (2011),
  5. 5.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. EATCS Monographs in Theoretical Computer Science. Springer (2006)Google Scholar
  6. 6.
    Ehrig, H., Ermel, C., Runge, O., Bucchiarone, A., Pelliccione, P.: Formal Analysis and Verification of Self-Healing Systems. In: Rosenblum, D.S., Taentzer, G. (eds.) FASE 2010. LNCS, vol. 6013, pp. 139–153. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Fujaba Development Group: Fujaba Tool Suite (2011),
  8. 8.
    Golas, U., Biermann, E., Ehrig, H., Ermel, C.: A visual interpreter semantics for statecharts based on amalgamated graph transformation. In: Echahed, R., Habel, A., Mosbah, M. (eds.) Selected Papers of International Workshop on Graph Computation Models (GCM 2010). ECEASST, vol. 39 (2011)Google Scholar
  9. 9.
    Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems relative to nested conditions. Mathematical Structures in Computer Science 19, 1–52 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hermann, F., Ehrig, H., Golas, U., Orejas, F.: Efficient analysis and execution of correct and complete model transformations based on triple graph grammars. In: Proc. Int. Workshop on Model Driven Interoperability, pp. 22–31. ACM (2010)Google Scholar
  11. 11.
    Jurack, S., Lambers, L., Mehner, K., Taentzer, G., Wierse, G.: Object Flow Definition for Refined Activity Diagrams. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 49–63. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Lambers, L.: Certifying Rule-Based Models using Graph Transformation. Ph.D. thesis, Technische Universität Berlin (2009)Google Scholar
  13. 13.
    Taentzer, G.: AGG: A Graph Transformation Environment for Modeling and Validation of Software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 446–453. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Taentzer, G., Ermel, C., Langer, P., Wimmer, M.: Conflict Detection for Model Versioning Based on Graph Modifications. In: Ehrig, H., Rensink, A., Rozenberg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372, pp. 171–186. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    TFS-Group, TU Berlin: AGG 2.0 (2011),
  16. 16.
    Universität Karlsruhe: Graph Rewrite Generator, GrGen (2010),
  17. 17.
    University of Twente: Graphs for Object-Oriented Verification (GROOVE) (2011),

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Olga Runge
    • 1
  • Claudia Ermel
    • 1
  • Gabriele Taentzer
    • 2
  1. 1.Technische Universität BerlinGermany
  2. 2.Philipps-Universität MarburgGermany

Personalised recommendations