A Multiple Classifier System for Classification of Breast Lesions Using Dynamic and Morphological Features in DCE-MRI

  • Roberta Fusco
  • Mario Sansone
  • Antonella Petrillo
  • Carlo Sansone
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7626)


In this paper we propose a Multiple Classifier System (MCS) for classifying breast lesions in Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI). The proposed MCS combines the results of two classifiers trained with dynamic and morphological features respectively. Twenty-one malignant and seventeen benign breast lesions, histologically proven, were analyzed. Volumes of Interest (VOIs) have been automatically extracted via a segmentation procedure assessed in a previous study. The performance of the MCS have been compared with histological classification. Results indicated that with automatic segmented VOIs 90% of test-set lesions were correctly classified.


breast DCE-MRI multiple classification system morphological and dynamic features 


  1. 1.
    Olsen, O., et al.: Screening for breast cancer with mammography. Cochrane Database of Systematic Reviews CD001877 (2001)Google Scholar
  2. 2.
    Lehman, C.D., et al.: MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer. The New England Journal of Medicine 356, 1295–1303 (2007)CrossRefGoogle Scholar
  3. 3.
    Schnall, M., et al.: Diagnostic architectural and dynamic features at breast MR imaging: Multicenter study. Radiology 238, 42–53 (2006)CrossRefGoogle Scholar
  4. 4.
    Nie, K., et al.: Quantitative analysis of lesion morphology and texture features for diagnostic prediction in breast MRI. Acad Radiol. 15(12), 1513–1525 (2008)CrossRefGoogle Scholar
  5. 5.
    Liney, G.P., et al.: Turnbull, Breast lesion analysis of shape technique: semiautomated vs. manual morphological de- scription. Journal of Magnetic Resonance Imaging 23, 493–498 (2006)CrossRefGoogle Scholar
  6. 6.
    Ikeda, D.M., et al.: Development, standardization, and testing of a lexicon for reporting contrast-enhanced breast magnetic resonance imaging. Journal of Magnetic Resonance Imaging 13, 889–895 (2001)CrossRefGoogle Scholar
  7. 7.
    McLaren, C.E., et al.: Prediction of malignant breast lesions from MRI features: a comparison of artificial neural network and logistic regression techniques. Acad. Radiol. 16(7), 842–851 (2009)CrossRefGoogle Scholar
  8. 8.
    Tzacheva, A.A., et al.: Reast cancer detection in gadolinium-enhanced MR images by static region descriptors and neural networks. J. Magn. Reson. Imaging 17(3), 337–342 (2003)CrossRefGoogle Scholar
  9. 9.
    Agner, S.C., et al.: Textural kinetics: a novel dynamic contrast-enhanced (DCE)-MRI feature for breast lesion classification. J. Digit. Imaging 24(3), 446–463 (2011)CrossRefGoogle Scholar
  10. 10.
    Zheng, Y., et al.: Segmentation and classification of breast tumor using dynamic contrast-enhanced MR images. Med. Image Comput. Comput. Assist. Interv. 10(Pt 2), 393–401 (2007)Google Scholar
  11. 11.
    Degenhard, A., et al.: UK MRI Breast Screening Study. Comparison between radiological and artificial neural network diagnosis in clinical screening. Physiol Meas. 23(4), 727–739 (2002)CrossRefGoogle Scholar
  12. 12.
    Gibbs, P., et al.: Textural analysis of contrast-enhanced MR images of the breast. Magn. Reson. Med. 50(1), 92–98 (2003)CrossRefGoogle Scholar
  13. 13.
    Schlossbauer, T., et al.: Classification of small contrast enhancing breast lesions in dynamic magnetic resonance imaging using a combination of morphological criteria and dynamic analysis based on unsupervised vector-quantization. Invest Radiol. 43(1), 56–64 (2008)CrossRefGoogle Scholar
  14. 14.
    Juntu, J., et al.: Machine learning study of several classifiers trained with texture analysis features to differentiate benign from malignant soft-tissue tumors in T1-MRI images. J. Magn. Reson. Imaging 31(3), 680–689 (2010)CrossRefGoogle Scholar
  15. 15.
    Fusco, R., et al.: Selection of Suspicious ROIs in Breast DCE-MRI. In: Maino, G., Foresti, G.L. (eds.) ICIAP 2011, Part I. LNCS, vol. 6978, pp. 48–57. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Fusco, R., et al.: Classification of breast lesions using dynamic and morphological features in DCE-MRI. In: Proceedings of Congresso Nazionale di Bioingegneria 2012, Rome, Italy, June 26-29 (2012)Google Scholar
  17. 17.
    Fusco, R., et al.: Segmentation and classification of breast lesions using dynamic features in Dynamic Contrast Enhanced-Magnetic Resonance Imaging. In: Proceedings of 25th IEEE International Symposium on Computer based Medical Systems (CBMS), Rome, Italy, June 20-22 (2012)Google Scholar
  18. 18.
    Zheng, Y., et al.: STEP: spatiotemporal enhancement pattern for MR-based breast tumor diagnosis. Med. Phys. 36(7), 3192–3204 (2009)CrossRefGoogle Scholar
  19. 19.
    Wedeg̈artner, U., et al.: Differentiation between benign and malignant findings on MR-mammography: usefulness of morphological criteria. Eur. Radiol. 11(9), 1645–1650 (2001)CrossRefGoogle Scholar
  20. 20.
    De Santo, M., et al.: Automatic Classification of Clustered Microcalcifications by a Multiple Expert System. Pattern Recognition 26, 1467–1477 (2003)CrossRefGoogle Scholar
  21. 21.
    Keyvanfard, F., et al.: Specificity enhancement in classification of breast MRI lesion based on multi-classifier. Neural Computing and Applications (2012), doi:10.1007/s00521-012-0937-yGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Roberta Fusco
    • 1
  • Mario Sansone
    • 1
  • Antonella Petrillo
    • 2
  • Carlo Sansone
    • 3
  1. 1.Department of Biomedical, Electronic and Telecommunication EngineeringUniversity Federico II of NaplesItaly
  2. 2.Department of Diagnostic ImagingNational Cancer Institute of Naples ‘Fondazione Pascale’Italy
  3. 3.Department of Computer and Systems EngineeringUniversity Federico II of NaplesItaly

Personalised recommendations